論文の概要: HUGO -- Highlighting Unseen Grid Options: Combining Deep Reinforcement Learning with a Heuristic Target Topology Approach
- arxiv url: http://arxiv.org/abs/2405.00629v1
- Date: Wed, 1 May 2024 16:54:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 15:07:37.615222
- Title: HUGO -- Highlighting Unseen Grid Options: Combining Deep Reinforcement Learning with a Heuristic Target Topology Approach
- Title(参考訳): HUGO -- 深い強化学習とヒューリスティックなターゲットトポロジーアプローチを組み合わせたハイライトなグリッドオプション
- Authors: Malte Lehna, Clara Holzhüter, Sven Tomforde, Christoph Scholz,
- Abstract要約: 本稿では,従来のDRLエージェントであるCurriculumAgent(CAgent)を新たなトポロジエージェントにアップグレードする検索アルゴリズムを提案する。
TTを含む中央値生存率は25%向上した。
- 参考スコア(独自算出の注目度): 1.0874597293913013
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the growth of Renewable Energy (RE) generation, the operation of power grids has become increasingly complex. One solution is automated grid operation, where Deep Reinforcement Learning (DRL) has repeatedly shown significant potential in Learning to Run a Power Network (L2RPN) challenges. However, only individual actions at the substation level have been subjected to topology optimization by most existing DRL algorithms. In contrast, we propose a more holistic approach in this paper by proposing specific Target Topologies (TTs) as actions. These topologies are selected based on their robustness. As part of this paper, we present a search algorithm to find the TTs and upgrade our previously developed DRL agent CurriculumAgent (CAgent) to a novel topology agent. We compare the upgrade to the previous CAgent agent and can increase their scores significantly by 10%. Further, we achieve a 25% better median survival with our TTs included. Later analysis shows that almost all TTs are close to the base topology, explaining their robustness.
- Abstract(参考訳): 再生可能エネルギー(RE)発電の増加に伴い、電力グリッドの運用はますます複雑になっている。
そこでは、Deep Reinforcement Learning(DRL)がLearning to Run a Power Network(L2RPN)の課題に対して、大きな可能性を繰り返し示している。
しかし、既存のDRLアルゴリズムでは、サブステーションレベルでの個々の動作のみがトポロジー最適化の対象となっている。
対照的に,本論文では,特定のターゲットトポロジ(TT)をアクションとして提案することで,より包括的なアプローチを提案する。
これらのトポロジはその堅牢性に基づいて選択される。
本稿では,従来のDRLエージェントであるCurriculumAgent(CAgent)を新しいトポロジーエージェントにアップグレードする検索アルゴリズムを提案する。
アップグレードを以前のCAgentエージェントと比較し、スコアを10%向上させることができる。
さらに, TTを含む中央値生存率は25%向上した。
後の分析では、ほとんど全てのTTがベーストポロジに近く、その堅牢性を説明する。
関連論文リスト
- ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
大規模言語モデルを微調整するためのマルチターンRLアルゴリズムを構築するためのフレームワークを開発する。
我々のフレームワークは階層的なRLアプローチを採用し、2つのRLアルゴリズムを並列に実行している。
実験により,ArCHerはエージェントタスクの効率と性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-02-29T18:45:56Z) - Active search and coverage using point-cloud reinforcement learning [50.741409008225766]
本稿では,目的探索とカバレッジのためのエンドツーエンドの深層強化学習ソリューションを提案する。
RLの深い階層的特徴学習は有効であり、FPS(Fastthest Point sample)を用いることで点数を削減できることを示す。
また、ポイントクラウドに対するマルチヘッドの注意がエージェントの学習を高速化する上で有効であるが、同じ結果に収束することを示す。
論文 参考訳(メタデータ) (2023-12-18T18:16:30Z) - Hierarchical Reinforcement Learning for Power Network Topology Control [22.203574989348773]
高次元行動空間での学習は、現実世界のシステムに強化学習を適用する上で重要な課題である。
本稿では,RL法による電力ネットワーク制御の可能性について検討する。
論文 参考訳(メタデータ) (2023-11-03T12:33:00Z) - Managing power grids through topology actions: A comparative study
between advanced rule-based and reinforcement learning agents [1.8549313085249322]
電力網の運用は、現在の高潮と再生可能エネルギー生産の増加により、ますます複雑になっている。
強化学習(Reinforcement Learning)は効率的かつ信頼性の高い手法であり,グリッドの自動操作の可能性も高いことが示されている。
本稿では、Binbinchenから提出されたエージェントを分析し、RLとルールベースのアプローチの両方において、エージェントを改善するための新しい戦略を提供する。
論文 参考訳(メタデータ) (2023-04-03T07:34:43Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - On Transforming Reinforcement Learning by Transformer: The Development
Trajectory [97.79247023389445]
Transformerは元々自然言語処理用に開発されたもので、コンピュータビジョンでも大きな成功を収めている。
既存の開発をアーキテクチャ拡張と軌道最適化の2つのカテゴリに分類する。
ロボット操作,テキストベースのゲーム,ナビゲーション,自律運転におけるTRLの主な応用について検討する。
論文 参考訳(メタデータ) (2022-12-29T03:15:59Z) - Curriculum Based Reinforcement Learning of Grid Topology Controllers to
Prevent Thermal Cascading [0.19116784879310028]
本稿では,電力系統演算子のドメイン知識を強化学習フレームワークに統合する方法について述べる。
環境を改良することにより、報酬チューニングを伴うカリキュラムベースのアプローチをトレーニング手順に組み込む。
複数のシナリオに対する並列トレーニングアプローチは、エージェントをいくつかのシナリオに偏りなくし、グリッド操作の自然変動に対して堅牢にするために使用される。
論文 参考訳(メタデータ) (2021-12-18T20:32:05Z) - Improving Generalization of Deep Reinforcement Learning-based TSP
Solvers [19.29028564568974]
本稿では,ディープラーニングアーキテクチャとDRL学習方法を含むMAGICという新しいアプローチを提案する。
マルチレイヤパーセプトロン,グラフニューラルネットワーク,アテンションモデルを統合したアーキテクチャでは,旅行セールスマンソリューションを逐次生成するポリシを定義している。
1) DRLポリシー更新をローカル検索とインターリーブし(新しいローカル検索技術を用いて)、(2) 新たなシンプルなベースラインを使用し、(3) 勾配学習を適用した。
論文 参考訳(メタデータ) (2021-10-06T15:16:19Z) - RL-DARTS: Differentiable Architecture Search for Reinforcement Learning [62.95469460505922]
我々は、強化学習(RL)における微分可能なアーキテクチャ探索(DARTS)の最初の応用の1つであるRL-DARTSを紹介する。
画像エンコーダをDARTSスーパーネットに置き換えることにより、検索方法はサンプリング効率が高く、余分な計算資源が最小限必要であり、また、既存のコードに小さな変更を加える必要がなく、オフ・ポリティクスとオン・ポリティクスのRLアルゴリズムとも互換性がある。
スーパーネットはより優れたセルを徐々に学習し、手作業で設計したポリシーに対して高い競争力を持つ代替アーキテクチャへとつながり、RLポリシーの以前の設計選択も検証できることを示す。
論文 参考訳(メタデータ) (2021-06-04T03:08:43Z) - Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
based on Hypernetwork [73.94896986868146]
位相検索は現代の計算イメージングシステムにおいて重要な要素である。
近年のディープラーニングの進歩は、堅牢で高速なPRの新たな可能性を開いた。
我々は、既存の制限を克服するために、深層展開のための新しいフレームワークを開発する。
論文 参考訳(メタデータ) (2021-01-12T08:36:23Z) - Active Finite Reward Automaton Inference and Reinforcement Learning
Using Queries and Counterexamples [31.31937554018045]
深部強化学習(RL)法は, 良好な性能を達成するために, 環境探索からの集中的なデータを必要とする。
本稿では,RLエージェントが探索過程を推論し,その将来的な探索を効果的に導くための高レベルの知識を蒸留するフレームワークを提案する。
具体的には、L*学習アルゴリズムを用いて、有限報酬オートマトンという形で高レベルの知識を学習する新しいRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-28T21:13:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。