Gradient-based Automatic Mixed Precision Quantization for Neural Networks On-Chip
- URL: http://arxiv.org/abs/2405.00645v2
- Date: Thu, 8 Aug 2024 19:47:00 GMT
- Title: Gradient-based Automatic Mixed Precision Quantization for Neural Networks On-Chip
- Authors: Chang Sun, Thea K. Ă…rrestad, Vladimir Loncar, Jennifer Ngadiuba, Maria Spiropulu,
- Abstract summary: We present High Granularity Quantization (HGQ), an innovative quantization-aware training method.
HGQ fine-tune the per-weight and per-activation precision by making them optimizable through gradient descent.
This approach enables ultra-low latency and low power neural networks on hardware capable of performing arithmetic operations.
- Score: 0.9187138676564589
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model size and inference speed at deployment time, are major challenges in many deep learning applications. A promising strategy to overcome these challenges is quantization. However, a straightforward uniform quantization to very low precision can result in significant accuracy loss. Mixed-precision quantization, based on the idea that certain parts of the network can accommodate lower precision without compromising performance compared to other parts, offers a potential solution. In this work, we present High Granularity Quantization (HGQ), an innovative quantization-aware training method that could fine-tune the per-weight and per-activation precision by making them optimizable through gradient descent. This approach enables ultra-low latency and low power neural networks on hardware capable of performing arithmetic operations with an arbitrary number of bits, such as FPGAs and ASICs. We demonstrate that HGQ can outperform existing methods by a substantial margin, achieving resource reduction by up to a factor of 20 and latency improvement by a factor of 5 while preserving accuracy.
Related papers
- On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
We propose an On-Chip Hardware-Aware Quantization framework, performing hardware-aware mixed-precision quantization on deployed edge devices.
For efficiency metrics, we built an On-Chip Quantization Aware pipeline, which allows the quantization process to perceive the actual hardware efficiency of the quantization operator.
For accuracy metrics, we propose Mask-Guided Quantization Estimation technology to effectively estimate the accuracy impact of operators in the on-chip scenario.
arXiv Detail & Related papers (2023-09-05T04:39:34Z) - Low-bit Quantization for Deep Graph Neural Networks with
Smoothness-aware Message Propagation [3.9177379733188715]
We present an end-to-end solution that aims to address these challenges for efficient GNNs in resource constrained environments.
We introduce a quantization based approach for all stages of GNNs, from message passing in training to node classification.
The proposed quantizer learns quantization ranges and reduces the model size with comparable accuracy even under low-bit quantization.
arXiv Detail & Related papers (2023-08-29T00:25:02Z) - Automatic Network Adaptation for Ultra-Low Uniform-Precision
Quantization [6.1664476076961146]
Uniform-precision neural network quantization has gained popularity since it simplifies densely packed arithmetic unit for high computing capability.
It ignores heterogeneous sensitivity to the impact of quantization errors across the layers, resulting in sub-optimal inference.
This work proposes a novel neural architecture search called neural channel expansion that adjusts the network structure to alleviate accuracy degradation from ultra-low uniform-precision quantization.
arXiv Detail & Related papers (2022-12-21T09:41:25Z) - AMED: Automatic Mixed-Precision Quantization for Edge Devices [3.5223695602582614]
Quantized neural networks are well known for reducing the latency, power consumption, and model size without significant harm to the performance.
Mixed-precision quantization offers better utilization of customized hardware that supports arithmetic operations at different bitwidths.
arXiv Detail & Related papers (2022-05-30T21:23:22Z) - Cluster-Promoting Quantization with Bit-Drop for Minimizing Network
Quantization Loss [61.26793005355441]
Cluster-Promoting Quantization (CPQ) finds the optimal quantization grids for neural networks.
DropBits is a new bit-drop technique that revises the standard dropout regularization to randomly drop bits instead of neurons.
We experimentally validate our method on various benchmark datasets and network architectures.
arXiv Detail & Related papers (2021-09-05T15:15:07Z) - DNN Quantization with Attention [5.72175302235089]
We propose a training procedure that relaxes the low-bit quantization.
The relaxation is achieved by using a learnable linear combination of high, medium and low-bit quantizations.
In experiments, our approach outperforms other low-bit quantization techniques.
arXiv Detail & Related papers (2021-03-24T16:24:59Z) - DAQ: Distribution-Aware Quantization for Deep Image Super-Resolution
Networks [49.191062785007006]
Quantizing deep convolutional neural networks for image super-resolution substantially reduces their computational costs.
Existing works either suffer from a severe performance drop in ultra-low precision of 4 or lower bit-widths, or require a heavy fine-tuning process to recover the performance.
We propose a novel distribution-aware quantization scheme (DAQ) which facilitates accurate training-free quantization in ultra-low precision.
arXiv Detail & Related papers (2020-12-21T10:19:42Z) - A Statistical Framework for Low-bitwidth Training of Deep Neural
Networks [70.77754244060384]
Fully quantized training (FQT) uses low-bitwidth hardware by quantizing the activations, weights, and gradients of a neural network model.
One major challenge with FQT is the lack of theoretical understanding, in particular of how gradient quantization impacts convergence properties.
arXiv Detail & Related papers (2020-10-27T13:57:33Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
We propose an Accurate Quantized object Detection solution, termed AQD, to get rid of floating-point computation.
Our AQD achieves comparable or even better performance compared with the full-precision counterpart under extremely low-bit schemes.
arXiv Detail & Related papers (2020-07-14T09:07:29Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.