Self-Play Preference Optimization for Language Model Alignment
- URL: http://arxiv.org/abs/2405.00675v5
- Date: Fri, 04 Oct 2024 18:48:25 GMT
- Title: Self-Play Preference Optimization for Language Model Alignment
- Authors: Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, Quanquan Gu,
- Abstract summary: Recent advancements suggest that directly working with preference probabilities can yield a more accurate reflection of human preferences.
We propose a self-play-based method for language model alignment, which treats the problem as a constant-sum two-player game.
Our approach, dubbed Self-Play Preference Optimization (SPPO), utilizes iterative policy updates to provably approximate the Nash equilibrium.
- Score: 75.83359213697854
- License:
- Abstract: Standard reinforcement learning from human feedback (RLHF) approaches relying on parametric models like the Bradley-Terry model fall short in capturing the intransitivity and irrationality in human preferences. Recent advancements suggest that directly working with preference probabilities can yield a more accurate reflection of human preferences, enabling more flexible and accurate language model alignment. In this paper, we propose a self-play-based method for language model alignment, which treats the problem as a constant-sum two-player game aimed at identifying the Nash equilibrium policy. Our approach, dubbed Self-Play Preference Optimization (SPPO), utilizes iterative policy updates to provably approximate the Nash equilibrium. Additionally, we propose a new SPPO objective which is both strongly motivated by theory and is simple and effective in practice. In our experiments, using only 60k prompts (without responses) from the UltraFeedback dataset and without any prompt augmentation, by leveraging a pre-trained preference model PairRM with only 0.4B parameters, SPPO can obtain a model from fine-tuning Mistral-7B-Instruct-v0.2 that achieves the state-of-the-art length-controlled win-rate of 28.53% against GPT-4-Turbo on AlpacaEval 2.0. It also outperforms the (iterative) DPO and IPO on MT-Bench, Arena-Hard, and the Open LLM Leaderboard. Starting from a stronger base model Llama-3-8B-Instruct, we are able to achieve a length-controlled win rate of 38.77%. Notably, the strong performance of SPPO is achieved without additional external supervision (e.g., responses, preferences, etc.) from GPT-4 or other stronger language models. Codes are available at https://github.com/uclaml/SPPO.
Related papers
- Just Say What You Want: Only-prompting Self-rewarding Online Preference Optimization [64.34767799614328]
Current self-rewarding approaches rely heavily on the discriminator's judgment capabilities.
We propose a novel, only-prompting self-rewarding online algorithm that generates preference datasets without relying on judgment capabilities.
arXiv Detail & Related papers (2024-09-26T04:41:08Z) - Iterative Nash Policy Optimization: Aligning LLMs with General Preferences via No-Regret Learning [55.65738319966385]
We propose a novel online algorithm, iterative Nash policy optimization (INPO)
Unlike previous methods, INPO bypasses the need for estimating the expected win rate for individual responses.
With an LLaMA-3-8B-based SFT model, INPO achieves a 42.6% length-controlled win rate on AlpacaEval 2.0 and a 37.8% win rate on Arena-Hard.
arXiv Detail & Related papers (2024-06-30T08:00:34Z) - Iterative Length-Regularized Direct Preference Optimization: A Case Study on Improving 7B Language Models to GPT-4 Level [50.897438358317686]
We show that iLR-DPO can enhance a 7B model to perform on par with GPT-4 without increasing verbosity.
Specifically, our 7B model achieves a $50.5%$ length-controlled win rate against $texttGPT-4 Preview$ on AlpacaEval 2.0.
arXiv Detail & Related papers (2024-06-17T17:55:38Z) - Bootstrapping Language Models with DPO Implicit Rewards [45.68366127605774]
Direct preference optimization (DPO) has greatly simplified the process from past work in reinforcement learning from human feedback.
In this work, we make a novel observation that this implicit reward model can by itself be used in a bootstrapping fashion to further align the LLM.
Our approach, named self-alignment with DPO ImpliCit rEwards (DICE), shows great improvements in alignment and achieves superior performance.
arXiv Detail & Related papers (2024-06-14T06:57:18Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z) - Weak-to-Strong Extrapolation Expedites Alignment [135.12769233630362]
We propose a method called ExPO to boost models' alignment with human preference.
We demonstrate that ExPO consistently improves off-the-shelf DPO/RLHF models.
We shed light on the essence of ExPO amplifying the reward signal learned during alignment training.
arXiv Detail & Related papers (2024-04-25T17:39:50Z) - Direct Nash Optimization: Teaching Language Models to Self-Improve with General Preferences [21.5605000515622]
This paper studies post-training large language models (LLMs) using preference feedback from an oracle to help a model iteratively improve over itself.
We introduce Direct Nash Optimization (DNO), a provable and efficient algorithm that marries the simplicity and stability of contrastive learning with theoretical generality from optimizing general preferences.
In our experiments, a resulting 7B parameter Orca-2.5 model achieves the state-of-the-art win-rate against GPT-4-Turbo of 33% on AlpacaE 2.0 (even after controlling for response length), an absolute gain of 26% (7% to 33%) over the initializing model
arXiv Detail & Related papers (2024-04-04T17:56:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.