Stackelberg Game Preference Optimization for Data-Efficient Alignment of Language Models
- URL: http://arxiv.org/abs/2502.18099v2
- Date: Thu, 27 Feb 2025 06:17:28 GMT
- Title: Stackelberg Game Preference Optimization for Data-Efficient Alignment of Language Models
- Authors: Xu Chu, Zhixin Zhang, Tianyu Jia, Yujie Jin,
- Abstract summary: Stackelberg Game Preference Optimization (SGPO) is a framework that models alignment as a two-player Stackelberg game.<n>We instantiate SGPO with the Stackelberg Self-Annotated Preference Optimization (SSAPO) algorithm, which iteratively self-annotates preferences.<n>Our method achieves 35.82% GPT-4 win-rate with Mistral-7B and 40.12% with Llama3-8B-Instruct within three rounds of SSAPO.
- Score: 11.503591858244844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aligning language models with human preferences is critical for real-world deployment, but existing methods often require large amounts of high-quality human annotations. Aiming at a data-efficient alignment method, we propose Stackelberg Game Preference Optimization (SGPO), a framework that models alignment as a two-player Stackelberg game, where a policy (leader) optimizes against a worst-case preference distribution (follower) within an $\epsilon$-Wasserstein ball, ensuring robustness to (self-)annotation noise and distribution shifts. SGPO guarantees $O(\epsilon)$-bounded regret, unlike Direct Preference Optimization (DPO), which suffers from linear regret growth in the distribution mismatch. We instantiate SGPO with the Stackelberg Self-Annotated Preference Optimization (SSAPO) algorithm, which iteratively self-annotates preferences and adversarially reweights synthetic annotated preferences. Using only 2K seed preferences, from the UltraFeedback dataset, i.e., 1/30 of human labels in the dataset, our method achieves 35.82% GPT-4 win-rate with Mistral-7B and 40.12% with Llama3-8B-Instruct within three rounds of SSAPO.
Related papers
- Calibrated Multi-Preference Optimization for Aligning Diffusion Models [92.90660301195396]
Calibrated Preference Optimization (CaPO) is a novel method to align text-to-image (T2I) diffusion models.
CaPO incorporates the general preference from multiple reward models without human annotated data.
Experimental results show that CaPO consistently outperforms prior methods.
arXiv Detail & Related papers (2025-02-04T18:59:23Z) - Geometric-Averaged Preference Optimization for Soft Preference Labels [78.2746007085333]
Many algorithms for aligning LLMs with human preferences assume that human preferences are binary and deterministic.<n>In this work, we introduce the distributional soft preference labels and improve Direct Preference Optimization (DPO) with a weighted geometric average of the LLM output likelihood in the loss function.
arXiv Detail & Related papers (2024-09-10T17:54:28Z) - Spread Preference Annotation: Direct Preference Judgment for Efficient LLM Alignment [72.99676237703099]
We propose a new framework that boosts the alignment of large language models with human preferences.
Our key idea is leveraging the human prior knowledge within the small (seed) data.
We introduce a noise-aware preference learning algorithm to mitigate the risk of low quality within generated preference data.
arXiv Detail & Related papers (2024-06-06T18:01:02Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z) - Self-Play Preference Optimization for Language Model Alignment [75.83359213697854]
Recent advancements suggest that directly working with preference probabilities can yield a more accurate reflection of human preferences.
We propose a self-play-based method for language model alignment, which treats the problem as a constant-sum two-player game.
Our approach, dubbed Self-Play Preference Optimization (SPPO), utilizes iterative policy updates to provably approximate the Nash equilibrium.
arXiv Detail & Related papers (2024-05-01T17:59:20Z) - Comparing Bad Apples to Good Oranges: Aligning Large Language Models via Joint Preference Optimization [105.3612692153615]
We propose a new axis based on eliciting preferences jointly over instruction-response pairs.
Joint preferences over instruction and response pairs can significantly enhance the alignment of large language models.
arXiv Detail & Related papers (2024-03-31T02:05:40Z) - Provably Robust DPO: Aligning Language Models with Noisy Feedback [10.523790076060171]
We introduce a general framework for policy optimization in the presence of random preference flips.
We design a novel loss function, which de-bias the effect of noise on average, making a policy trained by minimizing that loss robust to the noise.
Our experiments on IMDb sentiment generation and Anthropic's helpful-harmless dataset show that rDPO is robust to noise in preference labels compared to vanilla DPO.
arXiv Detail & Related papers (2024-03-01T09:55:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.