Anti-Jamming Path Planning Using GCN for Multi-UAV
- URL: http://arxiv.org/abs/2405.00689v1
- Date: Wed, 13 Mar 2024 07:28:05 GMT
- Title: Anti-Jamming Path Planning Using GCN for Multi-UAV
- Authors: Haechan Jeong,
- Abstract summary: The effectiveness of UAV swarms can be severely compromised by jamming technology.
A novel approach, where UAV swarms leverage collective intelligence to predict jamming areas, is proposed.
A multi-agent control algorithm is then employed to disperse the UAV swarm, avoid jamming, and regroup upon reaching the target.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the increasing significance of UAVs (Unmanned Aerial Vehicles) and the emergence of UAV swarms for collaborative operations in various domains. However, the effectiveness of UAV swarms can be severely compromised by jamming technology, necessitating robust antijamming strategies. While existing methods such as frequency hopping and physical path planning have been explored, there remains a gap in research on path planning for UAV swarms when the jammer's location is unknown. To address this, a novel approach, where UAV swarms leverage collective intelligence to predict jamming areas, evade them, and efficiently reach target destinations, is proposed. This approach utilizes Graph Convolutional Networks (GCN) to predict the location and intensity of jamming areas based on information gathered from each UAV. A multi-agent control algorithm is then employed to disperse the UAV swarm, avoid jamming, and regroup upon reaching the target. Through simulations, the effectiveness of the proposed method is demonstrated, showcasing accurate prediction of jamming areas and successful evasion through obstacle avoidance algorithms, ultimately achieving the mission objective. Proposed method offers robustness, scalability, and computational efficiency, making it applicable across various scenarios where UAV swarms operate in potentially hostile environments.
Related papers
- UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Deep Learning Based Situation Awareness for Multiple Missiles Evasion [1.7819574476785418]
We propose a decision support tool to help UAV operators in Beyond Visual Range (BVR) air combat scenarios assess the risks of different options and make decisions based on those.
The proposed method uses Deep Neural Networks (DNN) to learn from high-fidelity simulations to provide the operator with an outcome estimate for a set of different strategies.
Our results demonstrate that the proposed system can manage multiple incoming missiles, evaluate a family of options, and recommend the least risky course of action.
arXiv Detail & Related papers (2024-02-07T14:21:21Z) - UAV Swarm-enabled Collaborative Secure Relay Communications with
Time-domain Colluding Eavesdropper [115.56455278813756]
Unmanned aerial vehicles (UAV) as aerial relays are practically appealing for assisting Internet Things (IoT) network.
In this work, we aim to utilize the UAV to assist secure communication between the UAV base station and terminal terminal devices.
arXiv Detail & Related papers (2023-10-03T11:47:01Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - Distributed Reinforcement Learning for Flexible and Efficient UAV Swarm
Control [28.463670610865837]
We propose a distributed Reinforcement Learning (RL) approach that scales to larger swarms without modifications.
Our experiments show that the proposed method can yield effective strategies, which are robust to communication channel impairments.
We also show that our approach achieves better performance compared to a computationally intensive look-ahead.
arXiv Detail & Related papers (2021-03-08T11:06:28Z) - Efficient UAV Trajectory-Planning using Economic Reinforcement Learning [65.91405908268662]
We introduce REPlanner, a novel reinforcement learning algorithm inspired by economic transactions to distribute tasks between UAVs.
We formulate the path planning problem as a multi-agent economic game, where agents can cooperate and compete for resources.
As the system computes task distributions via UAV cooperation, it is highly resilient to any change in the swarm size.
arXiv Detail & Related papers (2021-03-03T20:54:19Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV) offers lots of applications in both commerce and recreation.
We consider the task of tracking UAVs, providing rich information such as location and trajectory.
We propose a dataset, Anti-UAV, with more than 300 video pairs containing over 580k manually annotated bounding boxes.
arXiv Detail & Related papers (2021-01-21T07:00:15Z) - Reinforcement Learning for UAV Autonomous Navigation, Mapping and Target
Detection [36.79380276028116]
We study a joint detection, mapping and navigation problem for a single unmanned aerial vehicle (UAV) equipped with a low complexity radar and flying in an unknown environment.
The goal is to optimize its trajectory with the purpose of maximizing the mapping accuracy and to avoid areas where measurements might not be sufficiently informative from the perspective of a target detection.
arXiv Detail & Related papers (2020-05-05T20:39:18Z) - Autonomous UAV Navigation: A DDPG-based Deep Reinforcement Learning
Approach [1.552282932199974]
We propose an autonomous UAV path planning framework using deep reinforcement learning approach.
The objective is to employ a self-trained UAV as a flying mobile unit to reach spatially distributed moving or static targets.
arXiv Detail & Related papers (2020-03-21T19:33:00Z) - Dynamic Radar Network of UAVs: A Joint Navigation and Tracking Approach [36.587096293618366]
An emerging problem is to track unauthorized small unmanned aerial vehicles (UAVs) hiding behind buildings.
This paper proposes the idea of a dynamic radar network of UAVs for real-time and high-accuracy tracking of malicious targets.
arXiv Detail & Related papers (2020-01-13T23:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.