EEG-Deformer: A Dense Convolutional Transformer for Brain-computer Interfaces
- URL: http://arxiv.org/abs/2405.00719v2
- Date: Tue, 29 Oct 2024 06:24:00 GMT
- Title: EEG-Deformer: A Dense Convolutional Transformer for Brain-computer Interfaces
- Authors: Yi Ding, Yong Li, Hao Sun, Rui Liu, Chengxuan Tong, Chenyu Liu, Xinliang Zhou, Cuntai Guan,
- Abstract summary: We introduce EEG-Deformer, which incorporates two main novel components into a CNN-Transformer.
EEG-Deformer learns from neurophysiologically meaningful brain regions for the corresponding cognitive tasks.
- Score: 17.524441950422627
- License:
- Abstract: Effectively learning the temporal dynamics in electroencephalogram (EEG) signals is challenging yet essential for decoding brain activities using brain-computer interfaces (BCIs). Although Transformers are popular for their long-term sequential learning ability in the BCI field, most methods combining Transformers with convolutional neural networks (CNNs) fail to capture the coarse-to-fine temporal dynamics of EEG signals. To overcome this limitation, we introduce EEG-Deformer, which incorporates two main novel components into a CNN-Transformer: (1) a Hierarchical Coarse-to-Fine Transformer (HCT) block that integrates a Fine-grained Temporal Learning (FTL) branch into Transformers, effectively discerning coarse-to-fine temporal patterns; and (2) a Dense Information Purification (DIP) module, which utilizes multi-level, purified temporal information to enhance decoding accuracy. Comprehensive experiments on three representative cognitive tasks-cognitive attention, driving fatigue, and mental workload detection-consistently confirm the generalizability of our proposed EEG-Deformer, demonstrating that it either outperforms or performs comparably to existing state-of-the-art methods. Visualization results show that EEG-Deformer learns from neurophysiologically meaningful brain regions for the corresponding cognitive tasks. The source code can be found at https://github.com/yi-ding-cs/EEG-Deformer.
Related papers
- Dual-TSST: A Dual-Branch Temporal-Spectral-Spatial Transformer Model for EEG Decoding [2.0721229324537833]
We propose a novel decoding architecture network with a dual-branch temporal-spectral-spatial transformer (Dual-TSST)
Our proposed Dual-TSST performs superiorly in various tasks, which achieves the promising EEG classification performance of average accuracy of 80.67%.
This study provides a new approach to high-performance EEG decoding, and has great potential for future CNN-Transformer based applications.
arXiv Detail & Related papers (2024-09-05T05:08:43Z) - EEGEncoder: Advancing BCI with Transformer-Based Motor Imagery Classification [11.687193535939798]
Brain-computer interfaces (BCIs) harness electroencephalographic signals for direct neural control of devices.
Traditional machine learning methods for EEG-based motor imagery (MI) classification encounter challenges such as manual feature extraction and susceptibility to noise.
This paper introduces EEGEncoder, a deep learning framework that employs modified transformers and TCNs to surmount these limitations.
arXiv Detail & Related papers (2024-04-23T09:51:24Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
This paper proposes a knowledge-driven cross-view contrastive learning framework (KDC2) to extract effective representations from EEG with limited labels.
The KDC2 method creates scalp and neural views of EEG signals, simulating the internal and external representation of brain activity.
By modeling prior neural knowledge based on neural information consistency theory, the proposed method extracts invariant and complementary neural knowledge to generate combined representations.
arXiv Detail & Related papers (2023-09-21T08:53:51Z) - EENED: End-to-End Neural Epilepsy Detection based on Convolutional
Transformer [6.24460694695129]
Transformer and Convolution neural network (CNN) based models have shown promising results in EEG signal processing.
We propose an end-to-end neural epilepsy detection model, EENED, that combines CNN and Transformer.
arXiv Detail & Related papers (2023-05-17T18:16:33Z) - Focused Decoding Enables 3D Anatomical Detection by Transformers [64.36530874341666]
We propose a novel Detection Transformer for 3D anatomical structure detection, dubbed Focused Decoder.
Focused Decoder leverages information from an anatomical region atlas to simultaneously deploy query anchors and restrict the cross-attention's field of view.
We evaluate our proposed approach on two publicly available CT datasets and demonstrate that Focused Decoder not only provides strong detection results and thus alleviates the need for a vast amount of annotated data but also exhibits exceptional and highly intuitive explainability of results via attention weights.
arXiv Detail & Related papers (2022-07-21T22:17:21Z) - Error Correction Code Transformer [92.10654749898927]
We propose to extend for the first time the Transformer architecture to the soft decoding of linear codes at arbitrary block lengths.
We encode each channel's output dimension to high dimension for better representation of the bits information to be processed separately.
The proposed approach demonstrates the extreme power and flexibility of Transformers and outperforms existing state-of-the-art neural decoders by large margins at a fraction of their time complexity.
arXiv Detail & Related papers (2022-03-27T15:25:58Z) - 2021 BEETL Competition: Advancing Transfer Learning for Subject
Independence & Heterogenous EEG Data Sets [89.84774119537087]
We design two transfer learning challenges around diagnostics and Brain-Computer-Interfacing (BCI)
Task 1 is centred on medical diagnostics, addressing automatic sleep stage annotation across subjects.
Task 2 is centred on Brain-Computer Interfacing (BCI), addressing motor imagery decoding across both subjects and data sets.
arXiv Detail & Related papers (2022-02-14T12:12:20Z) - Transformer-based Spatial-Temporal Feature Learning for EEG Decoding [4.8276709243429]
We propose a novel EEG decoding method that mainly relies on the attention mechanism.
We have reached the level of the state-of-the-art in multi-classification of EEG, with fewer parameters.
It has good potential to promote the practicality of brain-computer interface (BCI)
arXiv Detail & Related papers (2021-06-11T00:48:18Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
We introduce a new classification system that utilizes brain connectivity with a CNN and validate its effectiveness via the emotional video classification.
The level of concentration of the brain connectivity related to the emotional property of the target video is correlated with classification performance.
arXiv Detail & Related papers (2021-01-18T13:28:08Z) - Improving the performance of EEG decoding using anchored-STFT in
conjunction with gradient norm adversarial augmentation [0.22835610890984162]
EEG signals have a low spatial resolution and are often distorted with noise and artifacts.
Deep learning algorithms have proven to be quite efficient in learning hidden, meaningful patterns.
In this study, we proposed a novel input formation (feature extraction) method in conjunction with a novel deep learning based generative model.
arXiv Detail & Related papers (2020-11-30T11:18:06Z) - EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies
on Signal Sensing Technologies and Computational Intelligence Approaches and
their Applications [65.32004302942218]
Brain-Computer Interface (BCI) is a powerful communication tool between users and systems.
Recent technological advances have increased interest in electroencephalographic (EEG) based BCI for translational and healthcare applications.
arXiv Detail & Related papers (2020-01-28T10:36:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.