EEGEncoder: Advancing BCI with Transformer-Based Motor Imagery Classification
- URL: http://arxiv.org/abs/2404.14869v2
- Date: Mon, 24 Jun 2024 08:02:17 GMT
- Title: EEGEncoder: Advancing BCI with Transformer-Based Motor Imagery Classification
- Authors: Wangdan Liao, Weidong Wang,
- Abstract summary: Brain-computer interfaces (BCIs) harness electroencephalographic signals for direct neural control of devices.
Traditional machine learning methods for EEG-based motor imagery (MI) classification encounter challenges such as manual feature extraction and susceptibility to noise.
This paper introduces EEGEncoder, a deep learning framework that employs modified transformers and TCNs to surmount these limitations.
- Score: 11.687193535939798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain-computer interfaces (BCIs) harness electroencephalographic signals for direct neural control of devices, offering a significant benefit for individuals with motor impairments. Traditional machine learning methods for EEG-based motor imagery (MI) classification encounter challenges such as manual feature extraction and susceptibility to noise.This paper introduces EEGEncoder, a deep learning framework that employs modified transformers and TCNs to surmount these limitations. We innovatively propose a fusion architecture, namely Dual-Stream Temporal-Spatial Block (DSTS), to capture temporal and spatial features, improving the accuracy of Motor Imagery classification task. Additionally, we use multiple parallel structures to enhance the performance of the model. When tested on the BCI Competition IV-2a dataset, our model results outperform current state-of-the-art techniques.
Related papers
- CNN-Transformer Rectified Collaborative Learning for Medical Image Segmentation [60.08541107831459]
This paper proposes a CNN-Transformer rectified collaborative learning framework to learn stronger CNN-based and Transformer-based models for medical image segmentation.
Specifically, we propose a rectified logit-wise collaborative learning (RLCL) strategy which introduces the ground truth to adaptively select and rectify the wrong regions in student soft labels.
We also propose a class-aware feature-wise collaborative learning (CFCL) strategy to achieve effective knowledge transfer between CNN-based and Transformer-based models in the feature space.
arXiv Detail & Related papers (2024-08-25T01:27:35Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - EEG-Deformer: A Dense Convolutional Transformer for Brain-computer Interfaces [17.524441950422627]
We introduce EEG-Deformer, which incorporates two main novel components into a CNN-Transformer.
EEG-Deformer learns from neurophysiologically meaningful brain regions for the corresponding cognitive tasks.
arXiv Detail & Related papers (2024-04-25T18:00:46Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - vEEGNet: learning latent representations to reconstruct EEG raw data via
variational autoencoders [3.031375888004876]
We propose vEEGNet, a DL architecture with two modules, i.e., an unsupervised module based on variational autoencoders to extract a latent representation of the data, and a supervised module based on a feed-forward neural network to classify different movements.
We show state-of-the-art classification performance, and the ability to reconstruct both low-frequency and middle-range components of the raw EEG.
arXiv Detail & Related papers (2023-11-16T19:24:40Z) - SeUNet-Trans: A Simple yet Effective UNet-Transformer Model for Medical
Image Segmentation [0.0]
We propose a simple yet effective UNet-Transformer (seUNet-Trans) model for medical image segmentation.
In our approach, the UNet model is designed as a feature extractor to generate multiple feature maps from the input images.
By leveraging the UNet architecture and the self-attention mechanism, our model not only retains the preservation of both local and global context information but also is capable of capturing long-range dependencies between input elements.
arXiv Detail & Related papers (2023-10-16T01:13:38Z) - Defect Classification in Additive Manufacturing Using CNN-Based Vision
Processing [76.72662577101988]
This paper examines two scenarios: first, using convolutional neural networks (CNNs) to accurately classify defects in an image dataset from AM and second, applying active learning techniques to the developed classification model.
This allows the construction of a human-in-the-loop mechanism to reduce the size of the data required to train and generate training data.
arXiv Detail & Related papers (2023-07-14T14:36:58Z) - EEG-NeXt: A Modernized ConvNet for The Classification of Cognitive
Activity from EEG [0.0]
One of the main challenges in electroencephalogram (EEG) based brain-computer interface (BCI) systems is learning the subject/session invariant features to classify cognitive activities.
We propose a novel end-to-end machine learning pipeline, EEG-NeXt, which facilitates transfer learning.
arXiv Detail & Related papers (2022-12-08T10:15:52Z) - Classification of EEG Motor Imagery Using Deep Learning for
Brain-Computer Interface Systems [79.58173794910631]
A trained T1 class Convolutional Neural Network (CNN) model will be used to examine its ability to successfully identify motor imagery.
In theory, and if the model has been trained accurately, it should be able to identify a class and label it accordingly.
The CNN model will then be restored and used to try and identify the same class of motor imagery data using much smaller sampled data.
arXiv Detail & Related papers (2022-05-31T17:09:46Z) - Efficient pre-training objectives for Transformers [84.64393460397471]
We study several efficient pre-training objectives for Transformers-based models.
We prove that eliminating the MASK token and considering the whole output during the loss are essential choices to improve performance.
arXiv Detail & Related papers (2021-04-20T00:09:37Z) - Motor Imagery Classification of Single-Arm Tasks Using Convolutional
Neural Network based on Feature Refining [5.620334754517149]
Motor imagery (MI) is commonly used for recovery or rehabilitation of motor functions due to its signal origin.
In this study, we proposed a band-power feature refining convolutional neural network (BFR-CNN) to achieve high classification accuracy.
arXiv Detail & Related papers (2020-02-04T04:36:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.