CLIPArTT: Light-weight Adaptation of CLIP to New Domains at Test Time
- URL: http://arxiv.org/abs/2405.00754v1
- Date: Wed, 1 May 2024 07:24:30 GMT
- Title: CLIPArTT: Light-weight Adaptation of CLIP to New Domains at Test Time
- Authors: Gustavo Adolfo Vargas Hakim, David Osowiechi, Mehrdad Noori, Milad Cheraghalikhani, Ali Bahri, Moslem Yazdanpanah, Ismail Ben Ayed, Christian Desrosiers,
- Abstract summary: We introduce CLIP Adaptation duRing Test-Time (CLIPArTT), a fully test-time adaptation (TTA) approach for pre-trained vision-language models (VLMs)
Our method employs a unique, minimally invasive text prompt tuning process, wherein multiple predicted classes are aggregated into a single new text prompt, used as pseudo label to re-classify inputs.
Our findings demonstrate that, without requiring additional transformations nor new trainable modules, CLIPArTT enhances performance dynamically across non-corrupted datasets.
- Score: 19.0284321951354
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Pre-trained vision-language models (VLMs), exemplified by CLIP, demonstrate remarkable adaptability across zero-shot classification tasks without additional training. However, their performance diminishes in the presence of domain shifts. In this study, we introduce CLIP Adaptation duRing Test-Time (CLIPArTT), a fully test-time adaptation (TTA) approach for CLIP, which involves automatic text prompts construction during inference for their use as text supervision. Our method employs a unique, minimally invasive text prompt tuning process, wherein multiple predicted classes are aggregated into a single new text prompt, used as pseudo label to re-classify inputs in a transductive manner. Additionally, we pioneer the standardization of TTA benchmarks (e.g., TENT) in the realm of VLMs. Our findings demonstrate that, without requiring additional transformations nor new trainable modules, CLIPArTT enhances performance dynamically across non-corrupted datasets such as CIFAR-10, corrupted datasets like CIFAR-10-C and CIFAR-10.1, alongside synthetic datasets such as VisDA-C. This research underscores the potential for improving VLMs' adaptability through novel test-time strategies, offering insights for robust performance across varied datasets and environments. The code can be found at: https://github.com/dosowiechi/CLIPArTT.git
Related papers
- Words Matter: Leveraging Individual Text Embeddings for Code Generation in CLIP Test-Time Adaptation [21.20806568508201]
We show how to leverage class text information to mitigate distribution drifts encountered by vision-language models (VLMs) during test-time inference.
We propose to generate pseudo-labels for the test-time samples by exploiting generic class text embeddings as fixed centroids of a label assignment problem.
Experiments on multiple popular test-time adaptation benchmarks presenting diverse complexity empirically show the superiority of CLIP-OT.
arXiv Detail & Related papers (2024-11-26T00:15:37Z) - WATT: Weight Average Test-Time Adaptation of CLIP [17.74824534094739]
We present Weight Average Test-Time Adaptation (WATT) of CLIP, a pioneering approach facilitating full test-time adaptation.
Our method employs a diverse set of templates for text prompts, augmenting the existing framework of CLIP.
Our findings underscore the efficacy of WATT in enhancing performance across diverse datasets.
arXiv Detail & Related papers (2024-06-19T22:37:42Z) - DeCoOp: Robust Prompt Tuning with Out-of-Distribution Detection [52.100335904875614]
We present a novel prompt tuning approach, namely, Decomposed Context Optimization (DeCoOp), which introduces new-class detectors and sub-classifiers to further enhance the base-class and new-class discriminability.
Experimental results on 11 benchmark datasets validate the effectiveness of DePT and demonstrate that DeCoOp outperforms current state-of-the-art methods, providing a significant 2% average accuracy improvement.
arXiv Detail & Related papers (2024-06-01T07:46:42Z) - Just Shift It: Test-Time Prototype Shifting for Zero-Shot Generalization with Vision-Language Models [19.683461002518147]
Test-Time Prototype Shifting (TPS) is a pioneering approach designed to adapt vision-language models to test datasets using unlabeled test inputs.
TPS not only facilitates optimization-free prototype reuse for subsequent predictions but also enables seamless integration with current advancements in prompt engineering.
A notable aspect of our framework is its significantly reduced memory and computational demands when compared to conventional text-prompt tuning methods.
arXiv Detail & Related papers (2024-03-19T17:54:34Z) - Align Your Prompts: Test-Time Prompting with Distribution Alignment for
Zero-Shot Generalization [64.62570402941387]
We use a single test sample to adapt multi-modal prompts at test time by minimizing the feature distribution shift to bridge the gap in the test domain.
Our method improves zero-shot top- 1 accuracy beyond existing prompt-learning techniques, with a 3.08% improvement over the baseline MaPLe.
arXiv Detail & Related papers (2023-11-02T17:59:32Z) - M-Tuning: Prompt Tuning with Mitigated Label Bias in Open-Set Scenarios [103.6153593636399]
We propose a vision-language prompt tuning method with mitigated label bias (M-Tuning)
It introduces open words from the WordNet to extend the range of words forming the prompt texts from only closed-set label words to more, and thus prompts are tuned in a simulated open-set scenario.
Our method achieves the best performance on datasets with various scales, and extensive ablation studies also validate its effectiveness.
arXiv Detail & Related papers (2023-03-09T09:05:47Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
Contrastive language-image pre-training (CLIP) models have shown impressive zero-shot ability, but the further adaptation of CLIP on downstream tasks undesirably degrades OOD performances.
We propose CLIPood, a fine-tuning method that can adapt CLIP models to OOD situations where both domain shifts and open classes may occur on unseen test data.
Experiments on diverse datasets with different OOD scenarios show that CLIPood consistently outperforms existing generalization techniques.
arXiv Detail & Related papers (2023-02-02T04:27:54Z) - Test-Time Prompt Tuning for Zero-Shot Generalization in Vision-Language
Models [107.05966685291067]
We propose test-time prompt tuning (TPT) to learn adaptive prompts on the fly with a single test sample.
TPT improves the zero-shot top-1 accuracy of CLIP by 3.6% on average.
In evaluating cross-dataset generalization with unseen categories, TPT performs on par with the state-of-the-art approaches that use additional training data.
arXiv Detail & Related papers (2022-09-15T17:55:11Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.