Thermalization slowing down of weakly nonintegrable quantum spin dynamics
- URL: http://arxiv.org/abs/2405.00786v3
- Date: Tue, 24 Dec 2024 03:54:35 GMT
- Title: Thermalization slowing down of weakly nonintegrable quantum spin dynamics
- Authors: Budhaditya Bhattacharjee, Alexei Andreanov, Sergej Flach,
- Abstract summary: We study thermalization slowing down of a quantum many-body spin system upon approach to two distinct integrability limits.
We find that both timescales diverge upon approach to integrability.
This allows us to establish a universality of integrability breaking in quantum spin dynamics.
- Score: 0.0
- License:
- Abstract: We study thermalization slowing down of a quantum many-body spin system upon approach to two distinct integrability limits. Motivated by previous studies of classical systems, we identify two thermalization time scales: one quantum Lyapunov time scale is extracted by quantifying operator growth in time on an appropriately defined basis, while another ergodization time scale is related to the statistics of fluctuations of the time-evolved operator around its mean value based on the eigenstate thermalization hypothesis. Using a paradigmatic Quantum Ising chain we find that both timescales diverge upon approach to integrability. We investigate the relative strength of the divergence in the two limits and find that despite significant qualitative differences in the mechanism of integrability breaking, the timescales diverge in a similar fashion. This allows us to establish a universality of integrability breaking in quantum spin dynamics.
Related papers
- Time-dependent Neural Galerkin Method for Quantum Dynamics [42.81677042059531]
We introduce a classical computational method for quantum dynamics that relies on a global-in-time variational principle.
We showcase the method's effectiveness simulating global quantum quenches in the paradigmatic Transverse-Field Ising model in both 1D and 2D.
Overall, the method presented here shows competitive performance compared to state-of-the-art time-dependent variational approaches.
arXiv Detail & Related papers (2024-12-16T13:48:54Z) - Understanding multiple timescales in quantum dissipative dynamics:
Insights from quantum trajectories [0.0]
We show that open quantum systems with nearly degenerate energy levels exhibit long-lived metastable states in the approach to equilibrium.
This is a result of dramatic separation of timescales due to differences between Liouvillian eigenvalues.
arXiv Detail & Related papers (2024-02-07T02:06:51Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Emergent pair localization in a many-body quantum spin system [0.0]
Generically, non-integrable quantum systems are expected to thermalize as they comply with the Eigenstate Thermalization Hypothesis.
In the presence of strong disorder, the dynamics can possibly slow down to a degree that systems fail to thermalize on experimentally accessible timescales.
We study an ensemble of Heisenberg spins with a tunable distribution of random coupling strengths realized by a Rydberg quantum simulator.
arXiv Detail & Related papers (2022-07-28T16:31:18Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Relaxation of non-integrable systems and correlation functions [0.0]
We investigate early-time equilibration rates of observables in closed many-body quantum systems.
We find evidence for this coincidence when the initial conditions are sufficiently generic, or typical.
Our findings are confirmed by proving that these different timescales coincide for dynamics generated by Haar-random Hamiltonians.
arXiv Detail & Related papers (2021-12-17T12:34:34Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z) - Many-Body Dephasing in a Trapped-Ion Quantum Simulator [0.0]
How a closed interacting quantum many-body system relaxes and dephases as a function of time is a fundamental question in thermodynamic and statistical physics.
We analyse and observe the persistent temporal fluctuations after a quantum quench of a tunable long-range interacting transverse-field Ising Hamiltonian realized with a trapped-ion quantum simulator.
arXiv Detail & Related papers (2020-01-08T12:33:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.