Decoherence by warm horizons
- URL: http://arxiv.org/abs/2405.00804v2
- Date: Thu, 03 Oct 2024 15:53:15 GMT
- Title: Decoherence by warm horizons
- Authors: Jordan Wilson-Gerow, Annika Dugad, Yanbei Chen,
- Abstract summary: We map the DSW set-up onto a worldline-localized model resembling an Unruh-DeWitt particle detector.
We show that the Unruh effect is the only quantum mechanical effect underlying these random forces.
- Score: 12.14598582153305
- License:
- Abstract: Recently Danielson, Satishchandran, and Wald (DSW) have shown that quantum superpositions held outside of Killing horizons will decohere at a steady rate. This occurs because of the inevitable radiation of soft photons (gravitons), which imprint a electromagnetic (gravitational) ``which-path'' memory onto the horizon. Rather than appealing to this global description, an experimenter ought to also have a local description for the cause of decoherence. One might intuitively guess that this is just the bombardment of Hawking/Unruh radiation on the system, however simple calculations challenge this idea -- the same superposition held in a finite temperature inertial laboratory does not decohere at the DSW rate. In this work we provide a local description of the decoherence by mapping the DSW set-up onto a worldline-localized model resembling an Unruh-DeWitt particle detector. We present an interpretation in terms of random local forces which do not sufficiently self-average over long times. Using the Rindler horizon as a concrete example we clarify the crucial role of temperature, and show that the Unruh effect is the only quantum mechanical effect underlying these random forces. A general lesson is that for an environment which induces Ohmic friction on the central system (as one gets from the classical Abraham-Lorentz-Dirac force, in an accelerating frame) the fluctuation-dissipation theorem implies that when this environment is at finite temperature it will cause steady decoherence on the central system. Our results agree with DSW and provide the complementary local perspective.
Related papers
- Ultracold Neutrons in the Low Curvature Limit: Remarks on the
post-Newtonian effects [49.1574468325115]
We apply a perturbative scheme to derive the non-relativistic Schr"odinger equation in curved spacetime.
We calculate the next-to-leading order corrections to the neutron's energy spectrum.
While the current precision for observations of ultracold neutrons may not yet enable to probe them, they could still be relevant in the future or in alternative circumstances.
arXiv Detail & Related papers (2023-12-30T16:45:56Z) - Thermality of horizon through near horizon instability: a path integral
approach [0.0]
The near horizon Hamiltonian of a chargeless outgoing particle, for its particular motion in static as well as stationary black holes, is effectively $sim XP$ kind.
We calculate the effective path corresponding to its Schrodinger version of Hamiltonian through the path integral approach.
In both ways, we identify the correct expression of Hawking temperature.
arXiv Detail & Related papers (2022-10-08T15:52:49Z) - Gravitational orbits, double-twist mirage, and many-body scars [77.34726150561087]
We explore the implications of stable gravitational orbits around an AdS black hole for the boundary conformal field theory.
The orbits are long-lived states that eventually decay due to gravitational radiation and tunneling.
arXiv Detail & Related papers (2022-04-20T19:18:05Z) - Experimental Demonstration of Topological Charge Protection in Wigner
Current [3.093409936654924]
We reconstruct Wigner's current of quantum phase space dynamics for the first time.
We reveal the push-and-pull" associated with damping and diffusion due to the coupling of a squeezed vacuum state to its environment.
arXiv Detail & Related papers (2021-11-16T08:22:22Z) - Limits on inference of gravitational entanglement [0.6876932834688035]
We study semi-classical models of the atom interferometer that can reproduce the same effect.
We show that the core signature -- periodic collapses and revivals of the visibility -- can appear if the atom is subject to a random unitary channel.
arXiv Detail & Related papers (2021-11-01T13:35:00Z) - Partitioning dysprosium's electronic spin to reveal entanglement in
non-classical states [55.41644538483948]
We report on an experimental study of entanglement in dysprosium's electronic spin.
Our findings open up the possibility to engineer novel types of entangled atomic ensembles.
arXiv Detail & Related papers (2021-04-29T15:02:22Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - A model independent study of nonlocality with polarization entangled
photons [2.958827111645536]
We propose a model independent study of nonlocality that needs not to assume any local theory.
Our proposal involves a bipartite polarization-entangled system in which one photon immediately reduces into a circular-polarization (CP) state.
The state reduction of the photon can be mechanically monitored because a CP photon carries angular momentum and exerts a torque on a half-wave plate.
arXiv Detail & Related papers (2020-12-03T07:43:25Z) - Near horizon local instability and quantum thermality [0.0]
We revisit our previous proposed conjecture -- horizon creates a local instability which acts as the source of quantum temperature of black hole.
It is found that a chargesless massless particle moving along the null trajectory in Eddington-Finkelstein coordinates feels instability in the vicinity of the horizon.
arXiv Detail & Related papers (2020-07-28T15:34:03Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.