Geometric and General Relativistic Techniques for Non-relativistic Quantum Systems
- URL: http://arxiv.org/abs/2502.13009v1
- Date: Tue, 18 Feb 2025 16:27:29 GMT
- Title: Geometric and General Relativistic Techniques for Non-relativistic Quantum Systems
- Authors: Aonghus Hunter-McCabe, Brian P. Dolan, Peter Coles,
- Abstract summary: This thesis explores the application of differential geometric and general relativistic techniques to deepen our understanding of quantum mechanical systems.
First, we examine Unruh radiation in the context of an accelerated two-state atom perturbation, determining transition for a variety of accelerated trajectories via first-order theory.
Next, we investigate the quantum Hall effect in a spherical geometry using the Dirac operator for non-interacting fermions in a background magnetic field generated by a Wu-Yang monopole.
- Score: 0.0
- License:
- Abstract: This thesis explores the application of differential geometric and general relativistic techniques to deepen our understanding of quantum mechanical systems. We focus on three systems, employing these mathematical frameworks to uncover subtle features within each. First, we examine Unruh radiation in the context of an accelerated two-state atom, determining transition frequencies for a variety of accelerated trajectories via first-order perturbation theory. For harmonic motion of the atom in a vacuum, we derive transition rates with potential experimental realizations. Next, we investigate the quantum Hall effect in a spherical geometry using the Dirac operator for non-interacting fermions in a background magnetic field generated by a Wu-Yang monopole. The Atiyah-Singer index theorem constrains the degeneracy of the ground state, and the fractional quantum Hall effect is studied using the composite fermion model, where Dirac strings associated with the monopole field supply the statistical gauge field vortices. A unique, gapped ground state emerges, yielding fractions of the form $\nu = \frac{1}{2k+1}$ for large particle numbers. Finally, we examine the AdS/CMT correspondence through a bulk fermionic field in an RN-AdS$_4$ background (with a U(1) gauge field), dual to a boundary fermionic operator. Spherical and planar event horizon geometries are discussed, with the temperature of the RN black hole identified with that of the dual system on the boundary. By numerically solving for the spectral functions of the dual theory, for a spherical event horizon at zero temperature, we identify a shift in the Fermi surface from that which arises in the planar case. Preliminary evidence of a phase transition emerges upon examining these spectral functions, again for the spherical horizon, at non-zero temperature.
Related papers
- Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Realization of a fractional quantum Hall state with ultracold atoms [0.0]
Emblematic instances are fractional quantum Hall states, where the interplay of magnetic fields and strong interactions gives rise to fractionally charged quasi-particles.
Here, we realize a fractional quantum Hall (FQH) state with ultracold atoms in an optical lattice.
arXiv Detail & Related papers (2022-10-19T22:48:43Z) - Entanglement Spectroscopy and probing the Li-Haldane Conjecture in
Topological Quantum Matter [0.0]
Topological phases are characterized by their entanglement properties.
We propose to leverage the power of synthetic quantum systems for measuring entanglement via the Entanglement Hamiltonian.
arXiv Detail & Related papers (2021-10-08T06:13:51Z) - Electric circuit emulation of topological transitions driven by quantum
statistics [0.0]
We predict the topological transition in the two-particle interacting system driven by the particles' quantum statistics.
As a toy model, we investigate an extended one-dimensional Hubbard model with two anyonic excitations obeying fractional quantum statistics.
We develop a rigorous method to emulate the eigenmodes and eigenenergies of anyon pairs with resonant electric circuits.
arXiv Detail & Related papers (2021-08-23T22:34:52Z) - Topological Pauli Phase and Fractional Quantization of Orbital Angular
Momentum in the Problems of Classical and Quantum Physics [0.0]
In few-electron circular quantum dots the choice between integer and half-integer quantization of orbital angular momenta is defined by the Pauli principle.
In a gapless graphene, as in the case of gapped one, in the presence of overcharged impurity this problem can be solved experimentally.
arXiv Detail & Related papers (2021-02-17T17:18:18Z) - Effective Theory for the Measurement-Induced Phase Transition of Dirac
Fermions [0.0]
A wave function exposed to measurements undergoes pure state dynamics.
For many-particle systems, the competition of these different elements of dynamics can give rise to a scenario similar to quantum phase transitions.
A key finding is that this field theory decouples into one set of degrees of freedom that heats up indefinitely.
arXiv Detail & Related papers (2021-02-16T19:00:00Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.