論文の概要: Multi-intent-aware Session-based Recommendation
- arxiv url: http://arxiv.org/abs/2405.00986v1
- Date: Thu, 02 May 2024 03:49:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 01:28:30.176653
- Title: Multi-intent-aware Session-based Recommendation
- Title(参考訳): マルチインテリジェント対応セッションベースレコメンデーション
- Authors: Minjin Choi, Hye-young Kim, Hyunsouk Cho, Jongwuk Lee,
- Abstract要約: セッションベースのレコメンデーション(SBR)は、ユーザが進行中のセッション中に対話する次の項目を予測することを目的としている。
既存のSBRモデルはセッション表現を学ぶための洗練されたニューラルネットワークエンコーダの設計に重点を置いている。
セッションベース推薦モデル(MiaSRec)と呼ばれる新しいSBRモデルを提案する。
- 参考スコア(独自算出の注目度): 10.882186298592671
- License:
- Abstract: Session-based recommendation (SBR) aims to predict the following item a user will interact with during an ongoing session. Most existing SBR models focus on designing sophisticated neural-based encoders to learn a session representation, capturing the relationship among session items. However, they tend to focus on the last item, neglecting diverse user intents that may exist within a session. This limitation leads to significant performance drops, especially for longer sessions. To address this issue, we propose a novel SBR model, called Multi-intent-aware Session-based Recommendation Model (MiaSRec). It adopts frequency embedding vectors indicating the item frequency in session to enhance the information about repeated items. MiaSRec represents various user intents by deriving multiple session representations centered on each item and dynamically selecting the important ones. Extensive experimental results show that MiaSRec outperforms existing state-of-the-art SBR models on six datasets, particularly those with longer average session length, achieving up to 6.27% and 24.56% gains for MRR@20 and Recall@20. Our code is available at https://github.com/jin530/MiaSRec.
- Abstract(参考訳): セッションベースのレコメンデーション(SBR)は、ユーザが進行中のセッション中に対話する次の項目を予測することを目的としている。
既存のSBRモデルの多くは、セッション表現を学ぶための洗練されたニューラルネットワークエンコーダの設計に重点を置いており、セッション項目間の関係をキャプチャしている。
しかしながら、セッション内に存在するかもしれない多様なユーザ意図を無視して、最後の項目に集中する傾向があります。
この制限により、特に長いセッションでは、パフォーマンスが大幅に低下する。
この問題に対処するため、我々はMiaSRec(Multi-intent-aware Session-based Recommendation Model)と呼ばれる新しいSBRモデルを提案する。
セッション中のアイテムの頻度を示す周波数埋め込みベクターを採用し、繰り返されるアイテムに関する情報を強化する。
MiaSRecは、各項目を中心に複数のセッション表現を導出し、重要事項を動的に選択することで、様々なユーザ意図を表現する。
大規模な実験結果によると、MiaSRecは6つのデータセット、特に平均セッション長が長いデータセットで既存の最先端SBRモデルよりも優れており、MRR@20とRecall@20では最大6.27%と24.56%のゲインを達成している。
私たちのコードはhttps://github.com/jin530/MiaSRec.comで公開されています。
関連論文リスト
- Item Cluster-aware Prompt Learning for Session-based Recommendation [36.93334485299296]
セッションベースのレコメンデーションは、個々のセッション内のアイテムシーケンスを分析することによって、ユーザの好みをキャプチャすることを目的としている。
既存のアプローチのほとんどは、セッション内のアイテムの関係に重点を置いており、異なるセッション間でのアイテム間の接続を無視している。
このような課題に対処するために、CLIP-SBR(Cluster-aware Item Prompt Learning for Session-based Recommendation)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-07T05:20:21Z) - LLM-ESR: Large Language Models Enhancement for Long-tailed Sequential Recommendation [58.04939553630209]
現実世界のシステムでは、ほとんどのユーザーはほんの一握りのアイテムしか扱わないが、ほとんどのアイテムは滅多に消費されない。
これら2つの課題は、ロングテールユーザーとロングテールアイテムの課題として知られ、しばしば既存のシークエンシャルレコメンデーションシステムに困難をもたらす。
本稿では,これらの課題に対処するため,Large Language Models Enhancement framework for Sequential Recommendation (LLM-ESR)を提案する。
論文 参考訳(メタデータ) (2024-05-31T07:24:42Z) - Context-aware Session-based Recommendation with Graph Neural Networks [6.825493772727133]
グラフニューラルネットワークを用いた新しいコンテキスト認識セッションベースレコメンデーションモデルであるCARESを提案する。
まず,マルチリレーショナル・クロスセッショングラフを構築し,アイテム内およびクロスセッション・アイテムレベルのコンテキストに応じてアイテムを接続する。
ユーザの興味の変動をエンコードするために、パーソナライズされたアイテム表現を設計する。
論文 参考訳(メタデータ) (2023-10-14T14:29:52Z) - MISSRec: Pre-training and Transferring Multi-modal Interest-aware
Sequence Representation for Recommendation [61.45986275328629]
逐次レコメンデーションのためのマルチモーダル事前学習・転送学習フレームワークであるMISSRecを提案する。
ユーザ側ではトランスフォーマーベースのエンコーダデコーダモデルを設計し、コンテキストエンコーダがシーケンスレベルのマルチモーダルユーザ興味を捉えることを学習する。
候補項目側では,ユーザ適応項目表現を生成するために動的融合モジュールを採用する。
論文 参考訳(メタデータ) (2023-08-22T04:06:56Z) - STAR: A Session-Based Time-Aware Recommender System [8.122270502556372]
セッションベースレコメンダ(SBR)は,セッションにおける過去のインタラクションに関するユーザの次の好みを予測することを目的としている。
本稿では,SBRの性能向上におけるセッション時間情報の可能性について検討する。
本稿では、セッション内のイベント間の時間間隔を利用して、アイテムやセッションのより情報的な表現を構築するSTARフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-11T18:25:48Z) - G$^3$SR: Global Graph Guided Session-based Recommendation [116.38098186755029]
セッションベースのレコメンデーションは、匿名セッションデータを使用して高品質なレコメンデーションを提供しようとします。
G$3$SR (Global Graph Guided Session-based Recommendation)はセッションベースのレコメンデーションワークフローを2つのステップに分割する。
2つの実世界のベンチマークデータセットの実験は、最先端の手法よりもG$3$SR法の顕著で一貫した改善を示している。
論文 参考訳(メタデータ) (2022-03-12T15:44:03Z) - Sequential Search with Off-Policy Reinforcement Learning [48.88165680363482]
本稿では,RNN学習フレームワークとアテンションモデルからなる,スケーラブルなハイブリッド学習モデルを提案する。
新たな最適化のステップとして、1つのRNNパスに複数の短いユーザシーケンスをトレーニングバッチ内に収める。
また、マルチセッションパーソナライズされた検索ランキングにおける非政治強化学習の利用についても検討する。
論文 参考訳(メタデータ) (2022-02-01T06:52:40Z) - Session-aware Linear Item-Item Models for Session-based Recommendation [16.081904457871815]
セッションベースのレコメンデーションは、セッションで消費された以前の項目のシーケンスから次の項目を予測することを目的とする。
セッションの全体的側面を考慮した簡便かつ効果的な線形モデルを提案する。
論文 参考訳(メタデータ) (2021-03-30T06:28:40Z) - Session-Aware Query Auto-completion using Extreme Multi-label Ranking [61.753713147852125]
本稿では,セッション対応クエリ自動補完の新たな手法を,XMR(Multi Multi-Xtreme Ranking)問題として取り上げる。
アルゴリズムのキーステップにいくつかの修正を提案することにより、この目的のために一般的なXMRアルゴリズムを適応させる。
当社のアプローチは、セッション情報を活用しながら、自動補完システムの厳しいレイテンシ要件を満たします。
論文 参考訳(メタデータ) (2020-12-09T17:56:22Z) - Incorporating User Micro-behaviors and Item Knowledge into Multi-task
Learning for Session-based Recommendation [18.516121495514007]
セッションベースのレコメンデーション(SR)は、与えられたセッションに基づいて次に対話されたアイテムを予測することを目的としている。
ほとんどの既存のSRモデルは、あるユーザが対話するセッションにおける連続したアイテムの活用にのみ焦点をあてている。
セッションベースレコメンデーションのためのマルチタスク学習にユーザマイクロビヘイビアとアイテム知識を組み込んだ新しいSRモデルMKM-SRを提案する。
論文 参考訳(メタデータ) (2020-06-12T03:06:23Z) - TAGNN: Target Attentive Graph Neural Networks for Session-based
Recommendation [66.04457457299218]
セッションベースレコメンデーションのための新しいターゲット注意グラフニューラルネットワーク(TAGNN)モデルを提案する。
TAGNNでは、ターゲット・アウェア・アテンションは、様々なターゲット項目に関して異なるユーザ関心を適応的に活性化する。
学習した関心表現ベクトルは、異なる対象項目によって変化し、モデルの表現性を大幅に改善する。
論文 参考訳(メタデータ) (2020-05-06T14:17:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。