Multi-intent-aware Session-based Recommendation
- URL: http://arxiv.org/abs/2405.00986v1
- Date: Thu, 02 May 2024 03:49:46 GMT
- Title: Multi-intent-aware Session-based Recommendation
- Authors: Minjin Choi, Hye-young Kim, Hyunsouk Cho, Jongwuk Lee,
- Abstract summary: Session-based recommendation (SBR) aims to predict the following item a user will interact with during an ongoing session.
Most existing SBR models focus on designing sophisticated neural-based encoders to learn a session representation.
We propose a novel SBR model, called Multi-intent-aware Session-based Recommendation Model (MiaSRec)
- Score: 10.882186298592671
- License:
- Abstract: Session-based recommendation (SBR) aims to predict the following item a user will interact with during an ongoing session. Most existing SBR models focus on designing sophisticated neural-based encoders to learn a session representation, capturing the relationship among session items. However, they tend to focus on the last item, neglecting diverse user intents that may exist within a session. This limitation leads to significant performance drops, especially for longer sessions. To address this issue, we propose a novel SBR model, called Multi-intent-aware Session-based Recommendation Model (MiaSRec). It adopts frequency embedding vectors indicating the item frequency in session to enhance the information about repeated items. MiaSRec represents various user intents by deriving multiple session representations centered on each item and dynamically selecting the important ones. Extensive experimental results show that MiaSRec outperforms existing state-of-the-art SBR models on six datasets, particularly those with longer average session length, achieving up to 6.27% and 24.56% gains for MRR@20 and Recall@20. Our code is available at https://github.com/jin530/MiaSRec.
Related papers
- Multi-granularity Interest Retrieval and Refinement Network for Long-Term User Behavior Modeling in CTR Prediction [68.90783662117936]
Click-through Rate (CTR) prediction is crucial for online personalization platforms.
Recent advancements have shown that modeling rich user behaviors can significantly improve the performance of CTR prediction.
We propose Multi-granularity Interest Retrieval and Refinement Network (MIRRN)
arXiv Detail & Related papers (2024-11-22T15:29:05Z) - Item Cluster-aware Prompt Learning for Session-based Recommendation [36.93334485299296]
Session-based recommendation aims to capture user preferences by analyzing item sequences within individual sessions.
Most existing approaches focus mainly on intra-session item relationships, neglecting the connections between items across different sessions.
We propose the CLIP-SBR (Cluster-aware Item Prompt learning for Session-Based Recommendation) framework to address these challenges.
arXiv Detail & Related papers (2024-10-07T05:20:21Z) - LLM-ESR: Large Language Models Enhancement for Long-tailed Sequential Recommendation [58.04939553630209]
In real-world systems, most users interact with only a handful of items, while the majority of items are seldom consumed.
These two issues, known as the long-tail user and long-tail item challenges, often pose difficulties for existing Sequential Recommendation systems.
We propose the Large Language Models Enhancement framework for Sequential Recommendation (LLM-ESR) to address these challenges.
arXiv Detail & Related papers (2024-05-31T07:24:42Z) - Context-aware Session-based Recommendation with Graph Neural Networks [6.825493772727133]
We propose CARES, a novel context-aware session-based recommendation model with graph neural networks.
We first construct a multi-relation cross-session graph to connect items according to intra- and cross-session item-level contexts.
To encode the variation of user interests, we design personalized item representations.
arXiv Detail & Related papers (2023-10-14T14:29:52Z) - STAR: A Session-Based Time-Aware Recommender System [8.122270502556372]
Session-Based Recommenders (SBRs) aim to predict users' next preferences regard to their previous interactions in sessions while there is no historical information about them.
In this paper, we examine the potential of session temporal information in enhancing the performance of SBRs.
We propose the STAR framework, which utilizes the time intervals between events within sessions to construct more informative representations for items and sessions.
arXiv Detail & Related papers (2022-11-11T18:25:48Z) - G$^3$SR: Global Graph Guided Session-based Recommendation [116.38098186755029]
Session-based recommendation tries to make use of anonymous session data to deliver high-quality recommendation.
G$3$SR (Global Graph Guided Session-based Recommendation) decomposes the session-based recommendation workflow into two steps.
Experiments on two real-world benchmark datasets show remarkable and consistent improvements of the G$3$SR method over the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-12T15:44:03Z) - Sequential Search with Off-Policy Reinforcement Learning [48.88165680363482]
We propose a highly scalable hybrid learning model that consists of an RNN learning framework and an attention model.
As a novel optimization step, we fit multiple short user sequences in a single RNN pass within a training batch, by solving a greedy knapsack problem on the fly.
We also explore the use of off-policy reinforcement learning in multi-session personalized search ranking.
arXiv Detail & Related papers (2022-02-01T06:52:40Z) - Session-aware Linear Item-Item Models for Session-based Recommendation [16.081904457871815]
Session-based recommendation aims at predicting the next item given a sequence of previous items consumed in the session.
We propose simple-yet-effective linear models for considering the holistic aspects of the sessions.
arXiv Detail & Related papers (2021-03-30T06:28:40Z) - Session-Aware Query Auto-completion using Extreme Multi-label Ranking [61.753713147852125]
We take the novel approach of modeling session-aware query auto-completion as an e Multi-Xtreme Ranking (XMR) problem.
We adapt a popular XMR algorithm for this purpose by proposing several modifications to the key steps in the algorithm.
Our approach meets the stringent latency requirements for auto-complete systems while leveraging session information in making suggestions.
arXiv Detail & Related papers (2020-12-09T17:56:22Z) - Incorporating User Micro-behaviors and Item Knowledge into Multi-task
Learning for Session-based Recommendation [18.516121495514007]
Session-based recommendation (SR) aims to predict the next interacted item based on a given session.
Most existing SR models only focus on exploiting the consecutive items in a session interacted by a certain user.
We propose a novel SR model MKM-SR, which incorporates user Micro-behaviors and item Knowledge into Multi-task learning for Session-based Recommendation.
arXiv Detail & Related papers (2020-06-12T03:06:23Z) - TAGNN: Target Attentive Graph Neural Networks for Session-based
Recommendation [66.04457457299218]
We propose a novel target attentive graph neural network (TAGNN) model for session-based recommendation.
In TAGNN, target-aware attention adaptively activates different user interests with respect to varied target items.
The learned interest representation vector varies with different target items, greatly improving the expressiveness of the model.
arXiv Detail & Related papers (2020-05-06T14:17:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.