LLM-ESR: Large Language Models Enhancement for Long-tailed Sequential Recommendation
- URL: http://arxiv.org/abs/2405.20646v2
- Date: Fri, 01 Nov 2024 03:12:44 GMT
- Title: LLM-ESR: Large Language Models Enhancement for Long-tailed Sequential Recommendation
- Authors: Qidong Liu, Xian Wu, Yejing Wang, Zijian Zhang, Feng Tian, Yefeng Zheng, Xiangyu Zhao,
- Abstract summary: In real-world systems, most users interact with only a handful of items, while the majority of items are seldom consumed.
These two issues, known as the long-tail user and long-tail item challenges, often pose difficulties for existing Sequential Recommendation systems.
We propose the Large Language Models Enhancement framework for Sequential Recommendation (LLM-ESR) to address these challenges.
- Score: 58.04939553630209
- License:
- Abstract: Sequential recommender systems (SRS) aim to predict users' subsequent choices based on their historical interactions and have found applications in diverse fields such as e-commerce and social media. However, in real-world systems, most users interact with only a handful of items, while the majority of items are seldom consumed. These two issues, known as the long-tail user and long-tail item challenges, often pose difficulties for existing SRS. These challenges can adversely affect user experience and seller benefits, making them crucial to address. Though a few works have addressed the challenges, they still struggle with the seesaw or noisy issues due to the intrinsic scarcity of interactions. The advancements in large language models (LLMs) present a promising solution to these problems from a semantic perspective. As one of the pioneers in this field, we propose the Large Language Models Enhancement framework for Sequential Recommendation (LLM-ESR). This framework utilizes semantic embeddings derived from LLMs to enhance SRS without adding extra inference load from LLMs. To address the long-tail item challenge, we design a dual-view modeling framework that combines semantics from LLMs and collaborative signals from conventional SRS. For the long-tail user challenge, we propose a retrieval augmented self-distillation method to enhance user preference representation using more informative interactions from similar users. To verify the effectiveness and versatility of our proposed enhancement framework, we conduct extensive experiments on three real-world datasets using three popular SRS models. The results show that our method surpasses existing baselines consistently, and benefits long-tail users and items especially. The implementation code is available at https://github.com/Applied-Machine-Learning-Lab/LLM-ESR.
Related papers
- Large Language Model Empowered Embedding Generator for Sequential Recommendation [57.49045064294086]
Large Language Model (LLM) has the potential to understand the semantic connections between items, regardless of their popularity.
We present LLMEmb, an innovative technique that harnesses LLM to create item embeddings that bolster the performance of Sequential Recommender Systems.
arXiv Detail & Related papers (2024-09-30T03:59:06Z) - Towards Boosting LLMs-driven Relevance Modeling with Progressive Retrieved Behavior-augmented Prompting [23.61061000692023]
This study proposes leveraging user interactions recorded in search logs to yield insights into users' implicit search intentions.
We propose ProRBP, a novel Progressive Retrieved Behavior-augmented Prompting framework for integrating search scenario-oriented knowledge with Large Language Models.
arXiv Detail & Related papers (2024-08-18T11:07:38Z) - Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation [50.837277466987345]
We focus on the field of large language models (LLMs) for recommendation.
We propose RecLoRA, which incorporates a Personalized LoRA module that maintains independent LoRAs for different users.
We also design a Few2Many Learning Strategy, using a conventional recommendation model as a lens to magnify small training spaces to full spaces.
arXiv Detail & Related papers (2024-08-07T04:20:28Z) - GUME: Graphs and User Modalities Enhancement for Long-Tail Multimodal Recommendation [13.1192216083304]
We propose a novel Graphs and User Modalities Enhancement (GUME) for long-tail multimodal recommendation.
Specifically, we first enhance the user-item graph using multimodal similarity between items.
We then construct two types of user modalities: explicit interaction features and extended interest features.
arXiv Detail & Related papers (2024-07-17T06:29:00Z) - MMRel: A Relation Understanding Dataset and Benchmark in the MLLM Era [72.95901753186227]
Multi-Modal Relation Understanding (MMRel) is a comprehensive dataset for studying inter-object relations with Multi-modal Large Language Models (MLLMs)
MMRel features three distinctive attributes: (i) It includes over 15K question-answer pairs, which are sourced from three distinct domains, ensuring large scale and high diversity; (ii) It contains a subset featuring highly unusual relations, on which MLLMs often fail due to hallucinations, thus are very challenging; (iii) It provides manually verified high-quality labels for inter-object relations.
arXiv Detail & Related papers (2024-06-13T13:51:59Z) - MELT: Mutual Enhancement of Long-Tailed User and Item for Sequential
Recommendation [8.751117923894435]
The long-tailed problem is a long-standing challenge in Sequential Recommender Systems (SRS)
We propose a novel framework for SRS, called Mutual Enhancement of Long-Tailed user and item (MELT)
MELT jointly alleviates the long-tailed problem in the perspectives of both users and items.
arXiv Detail & Related papers (2023-04-17T15:49:34Z) - Multimodal Recommender Systems: A Survey [50.23505070348051]
Multimodal Recommender System (MRS) has attracted much attention from both academia and industry recently.
In this paper, we will give a comprehensive survey of the MRS models, mainly from technical views.
To access more details of the surveyed papers, such as implementation code, we open source a repository.
arXiv Detail & Related papers (2023-02-08T05:12:54Z) - Sequential Search with Off-Policy Reinforcement Learning [48.88165680363482]
We propose a highly scalable hybrid learning model that consists of an RNN learning framework and an attention model.
As a novel optimization step, we fit multiple short user sequences in a single RNN pass within a training batch, by solving a greedy knapsack problem on the fly.
We also explore the use of off-policy reinforcement learning in multi-session personalized search ranking.
arXiv Detail & Related papers (2022-02-01T06:52:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.