Enhancing Person Re-Identification via Uncertainty Feature Fusion and Auto-weighted Measure Combination
- URL: http://arxiv.org/abs/2405.01101v2
- Date: Fri, 9 Aug 2024 10:51:54 GMT
- Title: Enhancing Person Re-Identification via Uncertainty Feature Fusion and Auto-weighted Measure Combination
- Authors: Quang-Huy Che, Le-Chuong Nguyen, Vinh-Tiep Nguyen,
- Abstract summary: This study presents a novel methodology that significantly enhances Person Re-Identification (Re-ID)
Tested on benchmark datasets - Market-1501, DukeMTMC-ReID, and MSMT17 - our approach demonstrates substantial improvements in Rank-1 accuracy and mean Average Precision (mAP)
UFFM capitalizes on the power of feature synthesis from multiple images to overcome the limitations imposed by the variability of subject appearances across different views.
WDA further refines the process by intelligently aggregating similarity metrics, thereby enhancing the system's ability to discern subtle but critical differences between subjects.
- Score: 1.2923961938782627
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The quest for robust Person re-identification (Re-ID) systems capable of accurately identifying subjects across diverse scenarios remains a formidable challenge in surveillance and security applications. This study presents a novel methodology that significantly enhances Person Re-Identification (Re-ID) by integrating Uncertainty Feature Fusion (UFFM) with Wise Distance Aggregation (WDA). Tested on benchmark datasets - Market-1501, DukeMTMC-ReID, and MSMT17 - our approach demonstrates substantial improvements in Rank-1 accuracy and mean Average Precision (mAP). Specifically, UFFM capitalizes on the power of feature synthesis from multiple images to overcome the limitations imposed by the variability of subject appearances across different views. WDA further refines the process by intelligently aggregating similarity metrics, thereby enhancing the system's ability to discern subtle but critical differences between subjects. The empirical results affirm the superiority of our method over existing approaches, achieving new performance benchmarks across all evaluated datasets.
Related papers
- Exploring Stronger Transformer Representation Learning for Occluded Person Re-Identification [2.552131151698595]
We proposed a novel self-supervision and supervision combining transformer-based person re-identification framework, namely SSSC-TransReID.
We designed a self-supervised contrastive learning branch, which can enhance the feature representation for person re-identification without negative samples or additional pre-training.
Our proposed model obtains superior Re-ID performance consistently and outperforms the state-of-the-art ReID methods by large margins on the mean average accuracy (mAP) and Rank-1 accuracy.
arXiv Detail & Related papers (2024-10-21T03:17:25Z) - Synthesizing Efficient Data with Diffusion Models for Person Re-Identification Pre-Training [51.87027943520492]
We present a novel paradigm Diffusion-ReID to efficiently augment and generate diverse images based on known identities.
Benefiting from our proposed paradigm, we first create a new large-scale person Re-ID dataset Diff-Person, which consists of over 777K images from 5,183 identities.
arXiv Detail & Related papers (2024-06-10T06:26:03Z) - Robust Ensemble Person Re-Identification via Orthogonal Fusion with Occlusion Handling [4.431087385310259]
Occlusion remains one of the major challenges in person reidentification (ReID)
We propose a deep ensemble model that harnesses both CNN and Transformer architectures to generate robust feature representations.
arXiv Detail & Related papers (2024-03-29T18:38:59Z) - Density Adaptive Attention is All You Need: Robust Parameter-Efficient Fine-Tuning Across Multiple Modalities [0.9217021281095907]
DAAM integrates learnable mean and variance into its attention mechanism, implemented in a multi-head framework.
DAAM exhibits superior adaptability and efficacy across a diverse range of tasks, including emotion recognition in speech, image classification, and text classification.
We introduce the Importance Factor, a new learning-based metric that enhances the explainability of models trained with DAAM-based methods.
arXiv Detail & Related papers (2024-01-20T06:42:32Z) - ViewFormer: View Set Attention for Multi-view 3D Shape Understanding [7.39435265842079]
We present ViewFormer, a model for multi-view 3d shape recognition and retrieval.
With only 2 attention blocks and 4.8M learnable parameters, ViewFormer reaches 98.8% recognition accuracy on ModelNet40 for the first time.
On the challenging RGBD dataset, our method achieves 98.4% recognition accuracy, which is a 4.1% absolute improvement over the strongest baseline.
arXiv Detail & Related papers (2023-04-29T03:58:20Z) - Exploiting modality-invariant feature for robust multimodal emotion
recognition with missing modalities [76.08541852988536]
We propose to use invariant features for a missing modality imagination network (IF-MMIN)
We show that the proposed model outperforms all baselines and invariantly improves the overall emotion recognition performance under uncertain missing-modality conditions.
arXiv Detail & Related papers (2022-10-27T12:16:25Z) - End-to-End Context-Aided Unicity Matching for Person Re-identification [100.02321122258638]
We propose an end-to-end person unicity matching architecture for learning and refining the person matching relations.
We use the samples' global context relationship to refine the soft matching results and reach the matching unicity through bipartite graph matching.
Given full consideration to real-world person re-identification applications, we achieve the unicity matching in both one-shot and multi-shot settings.
arXiv Detail & Related papers (2022-10-20T07:33:57Z) - Dynamic Prototype Mask for Occluded Person Re-Identification [88.7782299372656]
Existing methods mainly address this issue by employing body clues provided by an extra network to distinguish the visible part.
We propose a novel Dynamic Prototype Mask (DPM) based on two self-evident prior knowledge.
Under this condition, the occluded representation could be well aligned in a selected subspace spontaneously.
arXiv Detail & Related papers (2022-07-19T03:31:13Z) - A High-Accuracy Unsupervised Person Re-identification Method Using
Auxiliary Information Mined from Datasets [53.047542904329866]
We make use of auxiliary information mined from datasets for multi-modal feature learning.
This paper proposes three effective training tricks, including Restricted Label Smoothing Cross Entropy Loss (RLSCE), Weight Adaptive Triplet Loss (WATL) and Dynamic Training Iterations (DTI)
arXiv Detail & Related papers (2022-05-06T10:16:18Z) - Trusted Multi-View Classification with Dynamic Evidential Fusion [73.35990456162745]
We propose a novel multi-view classification algorithm, termed trusted multi-view classification (TMC)
TMC provides a new paradigm for multi-view learning by dynamically integrating different views at an evidence level.
Both theoretical and experimental results validate the effectiveness of the proposed model in accuracy, robustness and trustworthiness.
arXiv Detail & Related papers (2022-04-25T03:48:49Z) - On Exploring Pose Estimation as an Auxiliary Learning Task for
Visible-Infrared Person Re-identification [66.58450185833479]
In this paper, we exploit Pose Estimation as an auxiliary learning task to assist the VI-ReID task in an end-to-end framework.
By jointly training these two tasks in a mutually beneficial manner, our model learns higher quality modality-shared and ID-related features.
Experimental results on two benchmark VI-ReID datasets show that the proposed method consistently improves state-of-the-art methods by significant margins.
arXiv Detail & Related papers (2022-01-11T09:44:00Z) - Neighbourhood-guided Feature Reconstruction for Occluded Person
Re-Identification [45.704612531562404]
We propose to reconstruct the feature representation of occluded parts by fully exploiting the information of its neighborhood in a gallery image set.
In the large-scale Occluded-DukeMTMC benchmark, our approach achieves 64.2% mAP and 67.6% rank-1 accuracy.
arXiv Detail & Related papers (2021-05-16T03:53:55Z) - Uncertainty-Aware Boosted Ensembling in Multi-Modal Settings [33.25969141014772]
Uncertainty estimation is a widely researched method to highlight the confidence of machine learning systems in deployment.
Sequential and parallel ensemble techniques have shown improved performance of ML systems in multi-modal settings.
We propose an uncertainty-aware boosting technique for multi-modal ensembling in order to focus on the data points with higher associated uncertainty estimates.
arXiv Detail & Related papers (2021-04-21T18:28:13Z) - Trusted Multi-View Classification [76.73585034192894]
We propose a novel multi-view classification method, termed trusted multi-view classification.
It provides a new paradigm for multi-view learning by dynamically integrating different views at an evidence level.
The proposed algorithm jointly utilizes multiple views to promote both classification reliability and robustness.
arXiv Detail & Related papers (2021-02-03T13:30:26Z) - Adversarial Multi-scale Feature Learning for Person Re-identification [0.0]
Person ReID aims to accurately measure visual similarities between person images for determining whether two images correspond to the same person.
We propose to improve Person ReID system performance from two perspective: textbf1).
Multi-scale feature learning (MSFL), which consists of Cross-scale information propagation (CSIP) and Multi-scale feature fusion (MSFF), to dynamically fuse features cross different scales.
Multi-scale gradient regularizor (MSGR), to emphasize ID-related factors and ignore irrelevant factors in an adversarial manner.
arXiv Detail & Related papers (2020-12-28T02:18:00Z) - Camera-aware Proxies for Unsupervised Person Re-Identification [60.26031011794513]
This paper tackles the purely unsupervised person re-identification (Re-ID) problem that requires no annotations.
We propose to split each single cluster into multiple proxies and each proxy represents the instances coming from the same camera.
Based on the camera-aware proxies, we design both intra- and inter-camera contrastive learning components for our Re-ID model.
arXiv Detail & Related papers (2020-12-19T12:37:04Z) - Learning to Recognize Patch-Wise Consistency for Deepfake Detection [39.186451993950044]
We propose a representation learning approach for this task, called patch-wise consistency learning (PCL)
PCL learns by measuring the consistency of image source features, resulting to representation with good interpretability and robustness to multiple forgery methods.
We evaluate our approach on seven popular Deepfake detection datasets.
arXiv Detail & Related papers (2020-12-16T23:06:56Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z) - Cross-modality Person re-identification with Shared-Specific Feature
Transfer [112.60513494602337]
Cross-modality person re-identification (cm-ReID) is a challenging but key technology for intelligent video analysis.
We propose a novel cross-modality shared-specific feature transfer algorithm (termed cm-SSFT) to explore the potential of both the modality-shared information and the modality-specific characteristics.
arXiv Detail & Related papers (2020-02-28T00:18:45Z) - Intra-Camera Supervised Person Re-Identification [87.88852321309433]
We propose a novel person re-identification paradigm based on an idea of independent per-camera identity annotation.
This eliminates the most time-consuming and tedious inter-camera identity labelling process.
We formulate a Multi-tAsk mulTi-labEl (MATE) deep learning method for Intra-Camera Supervised (ICS) person re-id.
arXiv Detail & Related papers (2020-02-12T15:26:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.