Continual Learning from Simulated Interactions via Multitask Prospective Rehearsal for Bionic Limb Behavior Modeling
- URL: http://arxiv.org/abs/2405.01114v3
- Date: Tue, 18 Feb 2025 13:00:46 GMT
- Title: Continual Learning from Simulated Interactions via Multitask Prospective Rehearsal for Bionic Limb Behavior Modeling
- Authors: Sharmita Dey, Benjamin Paassen, Sarath Ravindran Nair, Sabri Boughorbel, Arndt F. Schilling,
- Abstract summary: We introduce a model for human behavior in the context of bionic prosthesis control.
We propose a multitasking, continually adaptive model that anticipates and refines movements over time.
We validate our model through experiments on real-world human gait datasets, including transtibial amputees.
- Score: 0.7922558880545526
- License:
- Abstract: Lower limb amputations and neuromuscular impairments severely restrict mobility, necessitating advancements beyond conventional prosthetics. While motorized bionic limbs show promise, their effectiveness depends on replicating the dynamic coordination of human movement across diverse environments. In this paper, we introduce a model for human behavior in the context of bionic prosthesis control. Our approach leverages human locomotion demonstrations to learn the synergistic coupling of the lower limbs, enabling the prediction of the kinematic behavior of a missing limb during tasks such as walking, climbing inclines, and stairs. We propose a multitasking, continually adaptive model that anticipates and refines movements over time. At the core of our method is a technique called multitask prospective rehearsal, that anticipates and synthesizes future movements based on the previous prediction and employs a corrective mechanism for subsequent predictions. Our evolving architecture merges lightweight, task-specific modules on a shared backbone, ensuring both specificity and scalability. We validate our model through experiments on real-world human gait datasets, including transtibial amputees, across a wide range of locomotion tasks. Results demonstrate that our approach consistently outperforms baseline models, particularly in scenarios with distributional shifts, adversarial perturbations, and noise.
Related papers
- InterControl: Zero-shot Human Interaction Generation by Controlling Every Joint [67.6297384588837]
We introduce a novel controllable motion generation method, InterControl, to encourage the synthesized motions maintaining the desired distance between joint pairs.
We demonstrate that the distance between joint pairs for human-wise interactions can be generated using an off-the-shelf Large Language Model.
arXiv Detail & Related papers (2023-11-27T14:32:33Z) - TransFusion: A Practical and Effective Transformer-based Diffusion Model
for 3D Human Motion Prediction [1.8923948104852863]
We propose TransFusion, an innovative and practical diffusion-based model for 3D human motion prediction.
Our model leverages Transformer as the backbone with long skip connections between shallow and deep layers.
In contrast to prior diffusion-based models that utilize extra modules like cross-attention and adaptive layer normalization, we treat all inputs, including conditions, as tokens to create a more lightweight model.
arXiv Detail & Related papers (2023-07-30T01:52:07Z) - Persistent-Transient Duality: A Multi-mechanism Approach for Modeling
Human-Object Interaction [58.67761673662716]
Humans are highly adaptable, swiftly switching between different modes to handle different tasks, situations and contexts.
In Human-object interaction (HOI) activities, these modes can be attributed to two mechanisms: (1) the large-scale consistent plan for the whole activity and (2) the small-scale children interactive actions that start and end along the timeline.
This work proposes to model two concurrent mechanisms that jointly control human motion.
arXiv Detail & Related papers (2023-07-24T12:21:33Z) - From Data-Fitting to Discovery: Interpreting the Neural Dynamics of
Motor Control through Reinforcement Learning [3.6159844753873087]
We study structured neural activity of a virtual robot performing legged locomotion.
We find that embodied agents trained to walk exhibit smooth dynamics that avoid tangling -- or opposing neural trajectories in neighboring neural space.
arXiv Detail & Related papers (2023-05-18T16:52:27Z) - Weakly-supervised Action Transition Learning for Stochastic Human Motion
Prediction [81.94175022575966]
We introduce the task of action-driven human motion prediction.
It aims to predict multiple plausible future motions given a sequence of action labels and a short motion history.
arXiv Detail & Related papers (2022-05-31T08:38:07Z) - Investigating Pose Representations and Motion Contexts Modeling for 3D
Motion Prediction [63.62263239934777]
We conduct an indepth study on various pose representations with a focus on their effects on the motion prediction task.
We propose a novel RNN architecture termed AHMR (Attentive Hierarchical Motion Recurrent network) for motion prediction.
Our approach outperforms the state-of-the-art methods in short-term prediction and achieves much enhanced long-term prediction proficiency.
arXiv Detail & Related papers (2021-12-30T10:45:22Z) - Generating Smooth Pose Sequences for Diverse Human Motion Prediction [90.45823619796674]
We introduce a unified deep generative network for both diverse and controllable motion prediction.
Our experiments on two standard benchmark datasets, Human3.6M and HumanEva-I, demonstrate that our approach outperforms the state-of-the-art baselines in terms of both sample diversity and accuracy.
arXiv Detail & Related papers (2021-08-19T00:58:00Z) - Improving Human Motion Prediction Through Continual Learning [2.720960618356385]
Human motion prediction is an essential component for enabling closer human-robot collaboration.
It is compounded by the variability of human motion, both at a skeletal level due to the varying size of humans and at a motion level due to individual movement idiosyncrasies.
We propose a modular sequence learning approach that allows end-to-end training while also having the flexibility of being fine-tuned.
arXiv Detail & Related papers (2021-07-01T15:34:41Z) - Social NCE: Contrastive Learning of Socially-aware Motion
Representations [87.82126838588279]
Experimental results show that the proposed method dramatically reduces the collision rates of recent trajectory forecasting, behavioral cloning and reinforcement learning algorithms.
Our method makes few assumptions about neural architecture designs, and hence can be used as a generic way to promote the robustness of neural motion models.
arXiv Detail & Related papers (2020-12-21T22:25:06Z) - Leveraging Neural Network Gradients within Trajectory Optimization for
Proactive Human-Robot Interactions [32.57882479132015]
We present a framework that fuses together the interpretability and flexibility of trajectory optimization (TO) with the predictive power of state-of-the-art human trajectory prediction models.
We demonstrate the efficacy of our approach in a multi-agent scenario whereby a robot is required to safely and efficiently navigate through a crowd of up to ten pedestrians.
arXiv Detail & Related papers (2020-12-02T08:43:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.