Learning Realistic Joint Space Boundaries for Range of Motion Analysis of Healthy and Impaired Human Arms
- URL: http://arxiv.org/abs/2311.10653v2
- Date: Tue, 20 Aug 2024 17:21:43 GMT
- Title: Learning Realistic Joint Space Boundaries for Range of Motion Analysis of Healthy and Impaired Human Arms
- Authors: Shafagh Keyvanian, Michelle J. Johnson, Nadia Figueroa,
- Abstract summary: We propose a data-driven method to learn realistic anatomically constrained upper-limb range of motion boundaries from motion capture data.
We also propose an impairment index (II) metric that offers a quantitative assessment of capability/impairment when comparing healthy and impaired arms.
- Score: 0.5530212768657544
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: A realistic human kinematic model that satisfies anatomical constraints is essential for human-robot interaction, biomechanics and robot-assisted rehabilitation. Modeling realistic joint constraints, however, is challenging as human arm motion is constrained by joint limits, inter- and intra-joint dependencies, self-collisions, individual capabilities and muscular or neurological constraints which are difficult to represent. Hence, physicians and researchers have relied on simple box-constraints, ignoring important anatomical factors. In this paper, we propose a data-driven method to learn realistic anatomically constrained upper-limb range of motion (RoM) boundaries from motion capture data. This is achieved by fitting a one-class support vector machine to a dataset of upper-limb joint space exploration motions with an efficient hyper-parameter tuning scheme. Our approach outperforms similar works focused on valid RoM learning. Further, we propose an impairment index (II) metric that offers a quantitative assessment of capability/impairment when comparing healthy and impaired arms. We validate the metric on healthy subjects physically constrained to emulate hemiplegia and different disability levels as stroke patients.
Related papers
- Continual Imitation Learning for Prosthetic Limbs [0.7922558880545526]
Motorized bionic limbs offer promise, but their utility depends on mimicking the evolving synergy of human movement in various settings.
We present a novel model for bionic prostheses' application that leverages camera-based motion capture and wearable sensor data.
We propose a model that can multitask, adapt continually, anticipate movements, and refine locomotion.
arXiv Detail & Related papers (2024-05-02T09:22:54Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
We integrate a musculoskeletal system with a learnable parametric hand model, MANO, to create MS-MANO.
This model emulates the dynamics of muscles and tendons to drive the skeletal system, imposing physiologically realistic constraints on the resulting torque trajectories.
We also propose a simulation-in-the-loop pose refinement framework, BioPR, that refines the initial estimated pose through a multi-layer perceptron network.
arXiv Detail & Related papers (2024-04-16T02:18:18Z) - Enhancing Joint Motion Prediction for Individuals with Limb Loss Through
Model Reprogramming [0.0]
Mobility impairment caused by limb loss is a significant challenge faced by millions of individuals worldwide.
The development of advanced assistive technologies, such as prosthetic devices, has the potential to greatly improve the quality of life for amputee patients.
A critical component in the design of such technologies is the accurate prediction of reference joint motion for the missing limb.
arXiv Detail & Related papers (2024-03-11T10:10:45Z) - InterControl: Zero-shot Human Interaction Generation by Controlling Every Joint [67.6297384588837]
We introduce a novel controllable motion generation method, InterControl, to encourage the synthesized motions maintaining the desired distance between joint pairs.
We demonstrate that the distance between joint pairs for human-wise interactions can be generated using an off-the-shelf Large Language Model.
arXiv Detail & Related papers (2023-11-27T14:32:33Z) - Enhanced Human-Robot Collaboration using Constrained Probabilistic
Human-Motion Prediction [5.501477817904299]
We propose a novel human motion prediction framework that incorporates human joint constraints and scene constraints.
It is tested on a human arm kinematic model and implemented on a human-robot collaborative setup with a UR5 robot arm.
arXiv Detail & Related papers (2023-10-05T05:12:14Z) - Natural and Robust Walking using Reinforcement Learning without
Demonstrations in High-Dimensional Musculoskeletal Models [29.592874007260342]
Humans excel at robust bipedal walking in complex natural environments.
It is still not fully understood how the nervous system resolves the musculoskeletal redundancy to solve the multi-objective control problem.
arXiv Detail & Related papers (2023-09-06T13:20:31Z) - Skeleton2Humanoid: Animating Simulated Characters for
Physically-plausible Motion In-betweening [59.88594294676711]
Modern deep learning based motion synthesis approaches barely consider the physical plausibility of synthesized motions.
We propose a system Skeleton2Humanoid'' which performs physics-oriented motion correction at test time.
Experiments on the challenging LaFAN1 dataset show our system can outperform prior methods significantly in terms of both physical plausibility and accuracy.
arXiv Detail & Related papers (2022-10-09T16:15:34Z) - Towards Autonomous Atlas-based Ultrasound Acquisitions in Presence of
Articulated Motion [48.52403516006036]
This paper proposes a vision-based approach allowing autonomous robotic US limb scanning.
To this end, an atlas MRI template of a human arm with annotated vascular structures is used to generate trajectories.
In all cases, the system can successfully acquire the planned vascular structure on volunteers' limbs.
arXiv Detail & Related papers (2022-08-10T15:39:20Z) - Online Body Schema Adaptation through Cost-Sensitive Active Learning [63.84207660737483]
The work was implemented in a simulation environment, using the 7DoF arm of the iCub robot simulator.
A cost-sensitive active learning approach is used to select optimal joint configurations.
The results show cost-sensitive active learning has similar accuracy to the standard active learning approach, while reducing in about half the executed movement.
arXiv Detail & Related papers (2021-01-26T16:01:02Z) - Designing Personalized Interaction of a Socially Assistive Robot for
Stroke Rehabilitation Therapy [64.52563354823711]
The research of a socially assistive robot has a potential to augment and assist physical therapy sessions for patients with neurological and musculoskeletal problems.
This paper presents an interactive approach of a socially assistive robot that can dynamically select kinematic features of assessment on individual patient's exercises to predict the quality of motion.
arXiv Detail & Related papers (2020-07-13T16:12:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.