SynFlowNet: Design of Diverse and Novel Molecules with Synthesis Constraints
- URL: http://arxiv.org/abs/2405.01155v2
- Date: Wed, 16 Oct 2024 22:17:38 GMT
- Title: SynFlowNet: Design of Diverse and Novel Molecules with Synthesis Constraints
- Authors: Miruna Cretu, Charles Harris, Ilia Igashov, Arne Schneuing, Marwin Segler, Bruno Correia, Julien Roy, Emmanuel Bengio, Pietro LiĆ²,
- Abstract summary: We introduce SynFlowNet, a GFlowNet model whose action space uses chemical reactions and buyable reactants to sequentially build new molecules.
By incorporating forward synthesis as an explicit constraint of the generative mechanism, we aim at bridging the gap between in silico molecular generation and real world synthesis capabilities.
- Score: 16.21161274235011
- License:
- Abstract: Generative models see increasing use in computer-aided drug design. However, while performing well at capturing distributions of molecular motifs, they often produce synthetically inaccessible molecules. To address this, we introduce SynFlowNet, a GFlowNet model whose action space uses chemical reactions and buyable reactants to sequentially build new molecules. By incorporating forward synthesis as an explicit constraint of the generative mechanism, we aim at bridging the gap between in silico molecular generation and real world synthesis capabilities. We evaluate our approach using synthetic accessibility scores and an independent retrosynthesis tool to assess the synthesizability of our compounds, and motivate the choice of GFlowNets through considerable improvement in sample diversity compared to baselines. Additionally, we identify challenges with reaction encodings that can complicate traversal of the MDP in the backward direction. To address this, we introduce various strategies for learning the GFlowNet backward policy and thus demonstrate how additional constraints can be integrated into the GFlowNet MDP framework. This approach enables our model to successfully identify synthesis pathways for previously unseen molecules.
Related papers
- It Takes Two to Tango: Directly Optimizing for Constrained Synthesizability in Generative Molecular Design [0.4037357056611557]
Constrained synthesizability is an unaddressed challenge in generative molecular design.
We propose a novel reward function called TANimoto Group Overlap (TANGO)
TANGO transforms a sparse reward function into a dense and learnable reward function -- crucial for reinforcement learning.
arXiv Detail & Related papers (2024-10-15T11:59:51Z) - Generative Flows on Synthetic Pathway for Drug Design [39.69010664056235]
We propose RxnFlow, which sequentially assembles molecules using predefined molecular building blocks and chemical reaction templates.
RxnFlow achieves state-of-the-art performance on CrossDocked 2020 for pocket-conditional generation, with an average Vina score of -8.85kcal/mol and 34.8% synthesizability.
arXiv Detail & Related papers (2024-10-06T16:34:01Z) - Generative Artificial Intelligence for Navigating Synthesizable Chemical Space [25.65907958071386]
We introduce SynFormer, a generative modeling framework designed to efficiently explore and navigate synthesizable chemical space.
By incorporating a scalable transformer architecture and a diffusion module for building block selection, SynFormer surpasses existing models in synthesizable molecular design.
arXiv Detail & Related papers (2024-10-04T15:09:05Z) - BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chem is a large language model with 15 billion parameters, tailored for enhanced retrosynthesis prediction.
Our model captures a broad spectrum of chemical knowledge, enabling precise prediction of reaction conditions.
This development empowers chemists to adeptly address novel compounds, potentially expediting the innovation cycle in drug manufacturing and materials science.
arXiv Detail & Related papers (2024-08-19T05:17:40Z) - RGFN: Synthesizable Molecular Generation Using GFlowNets [51.33672611338754]
We propose Reaction-GFlowNet, an extension of the GFlowNet framework that operates directly in the space of chemical reactions.
RGFN allows out-of-the-box synthesizability while maintaining comparable quality of generated candidates.
We demonstrate the effectiveness of the proposed approach across a range of oracle models, including pretrained proxy models and GPU-accelerated docking.
arXiv Detail & Related papers (2024-06-01T13:11:11Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - Amortized Tree Generation for Bottom-up Synthesis Planning and
Synthesizable Molecular Design [2.17167311150369]
We report an amortized approach to generate synthetic pathways as a Markov decision process conditioned on a target molecular embedding.
This approach allows us to conduct synthesis planning in a bottom-up manner and design synthesizable molecules by decoding from optimized conditional codes.
arXiv Detail & Related papers (2021-10-12T22:43:25Z) - RetroXpert: Decompose Retrosynthesis Prediction like a Chemist [60.463900712314754]
We devise a novel template-free algorithm for automatic retrosynthetic expansion.
Our method disassembles retrosynthesis into two steps.
While outperforming the state-of-the-art baselines, our model also provides chemically reasonable interpretation.
arXiv Detail & Related papers (2020-11-04T04:35:34Z) - Learning To Navigate The Synthetically Accessible Chemical Space Using
Reinforcement Learning [75.95376096628135]
We propose a novel forward synthesis framework powered by reinforcement learning (RL) for de novo drug design.
In this setup, the agent learns to navigate through the immense synthetically accessible chemical space.
We describe how the end-to-end training in this study represents an important paradigm in radically expanding the synthesizable chemical space.
arXiv Detail & Related papers (2020-04-26T21:40:03Z) - Retrosynthesis Prediction with Conditional Graph Logic Network [118.70437805407728]
Computer-aided retrosynthesis is finding renewed interest from both chemistry and computer science communities.
We propose a new approach to this task using the Conditional Graph Logic Network, a conditional graphical model built upon graph neural networks.
arXiv Detail & Related papers (2020-01-06T05:36:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.