Amortized Tree Generation for Bottom-up Synthesis Planning and
Synthesizable Molecular Design
- URL: http://arxiv.org/abs/2110.06389v1
- Date: Tue, 12 Oct 2021 22:43:25 GMT
- Title: Amortized Tree Generation for Bottom-up Synthesis Planning and
Synthesizable Molecular Design
- Authors: Wenhao Gao, Roc\'io Mercado and Connor W. Coley
- Abstract summary: We report an amortized approach to generate synthetic pathways as a Markov decision process conditioned on a target molecular embedding.
This approach allows us to conduct synthesis planning in a bottom-up manner and design synthesizable molecules by decoding from optimized conditional codes.
- Score: 2.17167311150369
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Molecular design and synthesis planning are two critical steps in the process
of molecular discovery that we propose to formulate as a single shared task of
conditional synthetic pathway generation. We report an amortized approach to
generate synthetic pathways as a Markov decision process conditioned on a
target molecular embedding. This approach allows us to conduct synthesis
planning in a bottom-up manner and design synthesizable molecules by decoding
from optimized conditional codes, demonstrating the potential to solve both
problems of design and synthesis simultaneously. The approach leverages neural
networks to probabilistically model the synthetic trees, one reaction step at a
time, according to reactivity rules encoded in a discrete action space of
reaction templates. We train these networks on hundreds of thousands of
artificial pathways generated from a pool of purchasable compounds and a list
of expert-curated templates. We validate our method with (a) the recovery of
molecules using conditional generation, (b) the identification of synthesizable
structural analogs, and (c) the optimization of molecular structures given
oracle functions relevant to drug discovery.
Related papers
- Syntax-Guided Procedural Synthesis of Molecules [26.87587877386068]
Design of synthetically accessible molecules and recommending analogs to unsynthesizable molecules are important problems for accelerating molecular discovery.
We reconceptualize both problems using ideas from program synthesis.
We decouple the syntactic skeleton from the semantics of a synthetic tree to create a bilevel framework for reasoning about the space of synthesis pathways.
arXiv Detail & Related papers (2024-08-24T04:32:36Z) - BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chem is a large language model with 15 billion parameters, tailored for enhanced retrosynthesis prediction.
Our model captures a broad spectrum of chemical knowledge, enabling precise prediction of reaction conditions.
This development empowers chemists to adeptly address novel compounds, potentially expediting the innovation cycle in drug manufacturing and materials science.
arXiv Detail & Related papers (2024-08-19T05:17:40Z) - Double-Ended Synthesis Planning with Goal-Constrained Bidirectional Search [27.09693306892583]
We present a formulation of synthesis planning with starting material constraints.
We propose Double-Ended Synthesis Planning (DESP), a novel CASP algorithm under a bidirectional graph search scheme.
DESP can make use of existing one-step retrosynthesis models, and we anticipate its performance to scale as these one-step model capabilities improve.
arXiv Detail & Related papers (2024-07-08T18:56:00Z) - SynFlowNet: Design of Diverse and Novel Molecules with Synthesis Constraints [16.21161274235011]
We introduce SynFlowNet, a GFlowNet model whose action space uses chemical reactions and buyable reactants to sequentially build new molecules.
By incorporating forward synthesis as an explicit constraint of the generative mechanism, we aim at bridging the gap between in silico molecular generation and real world synthesis capabilities.
arXiv Detail & Related papers (2024-05-02T10:15:59Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - RetroXpert: Decompose Retrosynthesis Prediction like a Chemist [60.463900712314754]
We devise a novel template-free algorithm for automatic retrosynthetic expansion.
Our method disassembles retrosynthesis into two steps.
While outperforming the state-of-the-art baselines, our model also provides chemically reasonable interpretation.
arXiv Detail & Related papers (2020-11-04T04:35:34Z) - Predictive Synthesis of Quantum Materials by Probabilistic Reinforcement
Learning [1.4680035572775534]
We use reinforcement learning to predict optimal synthesis schedules for a prototypical quantum material, semiconducting monolayer MoS$_2$.
The model can be extended to predict profiles for synthesis of complex structures including multi-phase heterostructures.
arXiv Detail & Related papers (2020-09-14T20:50:45Z) - Learning Graph Models for Retrosynthesis Prediction [90.15523831087269]
Retrosynthesis prediction is a fundamental problem in organic synthesis.
This paper introduces a graph-based approach that capitalizes on the idea that the graph topology of precursor molecules is largely unaltered during a chemical reaction.
Our model achieves a top-1 accuracy of $53.7%$, outperforming previous template-free and semi-template-based methods.
arXiv Detail & Related papers (2020-06-12T09:40:42Z) - Learning To Navigate The Synthetically Accessible Chemical Space Using
Reinforcement Learning [75.95376096628135]
We propose a novel forward synthesis framework powered by reinforcement learning (RL) for de novo drug design.
In this setup, the agent learns to navigate through the immense synthetically accessible chemical space.
We describe how the end-to-end training in this study represents an important paradigm in radically expanding the synthesizable chemical space.
arXiv Detail & Related papers (2020-04-26T21:40:03Z) - Retrosynthesis Prediction with Conditional Graph Logic Network [118.70437805407728]
Computer-aided retrosynthesis is finding renewed interest from both chemistry and computer science communities.
We propose a new approach to this task using the Conditional Graph Logic Network, a conditional graphical model built upon graph neural networks.
arXiv Detail & Related papers (2020-01-06T05:36:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.