Dissipative phase transition: from qubits to qudits
- URL: http://arxiv.org/abs/2405.01223v2
- Date: Tue, 01 Oct 2024 18:54:26 GMT
- Title: Dissipative phase transition: from qubits to qudits
- Authors: Lukas Pausch, François Damanet, Thierry Bastin, John Martin,
- Abstract summary: We investigate the fate of dissipative phase transitions in quantum many-body systems when the individual constituents are qudits instead of qubits.
Considering qudits instead of qubits opens new perspectives on accessing rich phase diagrams in open many-body systems.
- Score: 0.0
- License:
- Abstract: We investigate the fate of dissipative phase transitions in quantum many-body systems when the individual constituents are qudits ($d$-level systems) instead of qubits. As an example system, we employ a permutation-invariant $XY$ model of $N$ infinite-range interacting $d$-level spins undergoing individual and collective dissipation. In the mean-field limit, we identify a dissipative phase transition, whose critical point is independent of $d$ after a suitable rescaling of parameters. When the decay rates between all adjacent levels are identical and $d\geq 4$, the critical point expands, in terms of the ratio between dissipation and interaction strengths, to a critical region in which two phases coexist and which increases as $d$ grows. In addition, a larger $d$ leads to a more pronounced change in spin expectation values at the critical point. Numerical investigations for finite $N$ reveal symmetry breaking signatures in the Liouvillian spectrum at the phase transition. The phase transition is furthermore marked by maximum entanglement negativity and a significant purity change of the steady state, which become more pronounced as $d$ increases. Considering qudits instead of qubits thus opens new perspectives on accessing rich phase diagrams in open many-body systems.
Related papers
- Multipartite Greenberger-Horne-Zeilinger Entanglement in Monitored Random Clifford Circuits [1.944801107374593]
We find a series of new results about steady-state phase transitions, critical properties, and entanglement dynamics.
For $textGHZ_3$ entanglement, we identify a measurement-induced transitions between a phase with finite amount of entanglement and a phase with no such entanglement.
For multipartite $textGHZ_ngeq 4$ entanglement, we find that they emerge exclusively at the measurement-induced criticality.
arXiv Detail & Related papers (2024-07-03T15:36:49Z) - Tunable quantum criticality and pseudocriticality across the fixed-point
annihilation in the anisotropic spin-boson model [0.26107298043931204]
We study the nontrivial renormalization-group scenario of fixed-point annihilation in spin-boson models.
We find a tunable transition between two localized phases that can be continuous or strongly first-order.
We also find scaling behavior at the symmetry-enhanced first-order transition, for which the inverse correlation-length exponent is given by the bath exponent.
arXiv Detail & Related papers (2024-03-04T19:00:07Z) - Ancilla quantum measurements on interacting chains: Sensitivity of entanglement dynamics to the type and concentration of detectors [46.76612530830571]
We consider a quantum many-body lattice system that is coupled to ancillary degrees of freedom (detectors'')
We explore the dynamics of density and of entanglement entropy in the chain, for various values of $rho_a$ and $M$.
arXiv Detail & Related papers (2023-11-21T21:41:11Z) - Many-body phase transitions in a non-Hermitian Ising chain [0.8749675983608172]
We study many-body phase transitions in a one-dimensional ferromagnetic transversed field Ising model with an imaginary field.
We show that the system exhibits three phase transitions: one second-order phase transition and two $mathcalPT$ phase transitions.
arXiv Detail & Related papers (2023-11-19T06:32:12Z) - Scale-invariant phase transition of disordered bosons in one dimension [0.0]
disorder-induced quantum phase transition between superfluid and non-superfluid states of bosonic particles in one dimension is generally expected to be of the Berezinskii-Kosterlitz-Thouless (BKT) type.
Here, we show that hard-core lattice bosons with integrable power-law hopping decaying with distance as $1/ralpha$ undergo a non-BKT continuous phase transition instead.
arXiv Detail & Related papers (2023-10-26T13:30:12Z) - Entanglement phase transition due to reciprocity breaking without
measurement or post-selection [59.63862802533879]
EPT occurs for a system undergoing purely unitary evolution.
We analytically derive the entanglement entropy out of and at the critical point for the $l=1$ and $l/N ll 1$ case.
arXiv Detail & Related papers (2023-08-28T14:28:59Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Superdiffusion in random two dimensional system with time-reversal symmetry and long-range hopping [45.873301228345696]
localization problem in the crossover regime for the dimension $d=2$ and hopping $V(r) propto r-2$ is not resolved yet.
We show that for the hopping determined by two-dimensional anisotropic dipole-dipole interactions there exist two distinguishable phases at weak and strong disorder.
arXiv Detail & Related papers (2022-05-29T16:53:20Z) - Quantum many-body spin rings coupled to ancillary spins: The sunburst
quantum Ising model [0.0]
We study a quantum "sunburst model" composed of a quantum Ising spin-ring in a transverse field.
We observe rapid and nonanalytic changes in proximity of the quantum transitions of the Ising ring.
arXiv Detail & Related papers (2022-02-16T11:22:19Z) - Boundary time crystals in collective $d$-level systems [64.76138964691705]
Boundary time crystals are non-equilibrium phases of matter occurring in quantum systems in contact to an environment.
We study BTC's in collective $d$-level systems, focusing in the cases with $d=2$, $3$ and $4$.
arXiv Detail & Related papers (2021-02-05T19:00:45Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.