Multipartite Greenberger-Horne-Zeilinger Entanglement in Monitored Random Clifford Circuits
- URL: http://arxiv.org/abs/2407.03206v2
- Date: Tue, 26 Nov 2024 10:18:52 GMT
- Title: Multipartite Greenberger-Horne-Zeilinger Entanglement in Monitored Random Clifford Circuits
- Authors: Guanglei Xu, Yu-Xiang Zhang,
- Abstract summary: We find a series of new results about steady-state phase transitions, critical properties, and entanglement dynamics.
For $textGHZ_3$ entanglement, we identify a measurement-induced transitions between a phase with finite amount of entanglement and a phase with no such entanglement.
For multipartite $textGHZ_ngeq 4$ entanglement, we find that they emerge exclusively at the measurement-induced criticality.
- Score: 1.944801107374593
- License:
- Abstract: We revisit the standard monitored random Clifford circuits from the perspective of $n$-partite Greenberger-Horne-Zeilinger ($\text{GHZ}_n$) entanglement, and find a series of new results about steady-state phase transitions, critical properties, and entanglement dynamics. For $\text{GHZ}_3$ entanglement, we identify a measurement-induced transitions between a phase with finite amount of $\text{GHZ}_3$ entanglement and a phase with no such entanglement. This transition also depends on how the system is divided into three parties: A partitioning-induced phase transition is observed in circuits with open boundary condition. For multipartite $\text{GHZ}_{n\geq 4}$ entanglement, we find that they emerge exclusively at the measurement-induced criticality. For the dynamical aspect, we find that $\text{GHZ}_3$ entanglement does not grow gradually as the case of bipartite entanglement. Instead, it appears suddenly via a dynamical phase transition (DPT). Moreover, in some situations without measurements, it persists for a while and then dies through another DPT. These DPTs are not in the scope of standard formalism based on Loschmidt amplitude.
Related papers
- Phase driven unconventional superradiance phase transition in non-Hermitian cascaded quantum Rabi cavities [0.0]
This study investigates phase-driven symmetry breaking leading to superradiance phase transitions in non-Hermitian quantum Rabi cavities.
We analytically derive the superradiance phase boundary, validated by observables.
We identify phase-driven first- and second-order superradiance phase transitions, focusing on the quantum criticality of the second-order transition.
arXiv Detail & Related papers (2024-06-24T12:13:50Z) - KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Dissipative phase transition: from qubits to qudits [0.0]
We investigate the fate of dissipative phase transitions in quantum many-body systems when the individual constituents are qudits instead of qubits.
Considering qudits instead of qubits opens new perspectives on accessing rich phase diagrams in open many-body systems.
arXiv Detail & Related papers (2024-05-02T12:08:28Z) - Ancilla quantum measurements on interacting chains: Sensitivity of entanglement dynamics to the type and concentration of detectors [46.76612530830571]
We consider a quantum many-body lattice system that is coupled to ancillary degrees of freedom (detectors'')
We explore the dynamics of density and of entanglement entropy in the chain, for various values of $rho_a$ and $M$.
arXiv Detail & Related papers (2023-11-21T21:41:11Z) - Many-body phase transitions in a non-Hermitian Ising chain [0.8749675983608172]
We study many-body phase transitions in a one-dimensional ferromagnetic transversed field Ising model with an imaginary field.
We show that the system exhibits three phase transitions: one second-order phase transition and two $mathcalPT$ phase transitions.
arXiv Detail & Related papers (2023-11-19T06:32:12Z) - Scale-invariant phase transition of disordered bosons in one dimension [0.0]
disorder-induced quantum phase transition between superfluid and non-superfluid states of bosonic particles in one dimension is generally expected to be of the Berezinskii-Kosterlitz-Thouless (BKT) type.
Here, we show that hard-core lattice bosons with integrable power-law hopping decaying with distance as $1/ralpha$ undergo a non-BKT continuous phase transition instead.
arXiv Detail & Related papers (2023-10-26T13:30:12Z) - Measurement-induced phase transition in a single-body tight-binding model [0.0]
We study the statistical properties of a single free quantum particle evolving coherently on a discrete lattice in $rm d$ spatial dimensions.
Our numerical results indicate that the system undergoes a Measurement-induced Phase Transition (MiPT) for $rm d>1$ from a $textitdelocalized$ to a $textitlocalized$ phase.
arXiv Detail & Related papers (2023-09-26T16:03:09Z) - Measurement-induced phase transition for free fermions above one dimension [46.176861415532095]
Theory of the measurement-induced entanglement phase transition for free-fermion models in $d>1$ dimensions is developed.
Critical point separates a gapless phase with $elld-1 ln ell$ scaling of the second cumulant of the particle number and of the entanglement entropy.
arXiv Detail & Related papers (2023-09-21T18:11:04Z) - Entanglement phase transition due to reciprocity breaking without
measurement or post-selection [59.63862802533879]
EPT occurs for a system undergoing purely unitary evolution.
We analytically derive the entanglement entropy out of and at the critical point for the $l=1$ and $l/N ll 1$ case.
arXiv Detail & Related papers (2023-08-28T14:28:59Z) - Multipartite Entanglement in the Measurement-Induced Phase Transition of
the Quantum Ising Chain [77.34726150561087]
External monitoring of quantum many-body systems can give rise to a measurement-induced phase transition.
We show that this transition extends beyond bipartite correlations to multipartite entanglement.
arXiv Detail & Related papers (2023-02-13T15:54:11Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.