論文の概要: Avoiding Redundant Restarts in Multimodal Global Optimization
- arxiv url: http://arxiv.org/abs/2405.01226v1
- Date: Thu, 2 May 2024 12:10:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 16:44:25.384032
- Title: Avoiding Redundant Restarts in Multimodal Global Optimization
- Title(参考訳): マルチモーダルグローバル最適化における冗長リスタートの回避
- Authors: Jacob de Nobel, Diederick Vermetten, Anna V. Kononova, Ofer M. Shir, Thomas Bäck,
- Abstract要約: 標準的なマルチモーダルベンチマーク関数において、このような重複再起動の度合いを評価する。
そこで我々は,CMA-ESで再起動するのを避けるために,リペリング機構を提案する。
- 参考スコア(独自算出の注目度): 0.017476232824732776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Na\"ive restarts of global optimization solvers when operating on multimodal search landscapes may resemble the Coupon's Collector Problem, with a potential to waste significant function evaluations budget on revisiting the same basins of attractions. In this paper, we assess the degree to which such ``duplicate restarts'' occur on standard multimodal benchmark functions, which defines the \textit{redundancy potential} of each particular landscape. We then propose a repelling mechanism to avoid such wasted restarts with the CMA-ES and investigate its efficacy on test cases with high redundancy potential compared to the standard restart mechanism.
- Abstract(参考訳): マルチモーダルな検索ランドスケープで操作する場合、Na\"5"は、Couponのコレクター問題に似ており、アトラクションの同一領域を再検討する上で、重要な機能評価予算を浪費する可能性がある。
本稿では,標準的なマルチモーダルベンチマーク関数において,このような‘duplicate restarts'が生じる程度を評価し,それぞれのランドスケープの‘textit{redundancy potential’を定義する。
そこで本研究では,CMA-ESを用いた再起動防止機構を提案するとともに,従来の再起動機構と比較して高い冗長性を有するテストケースに対する有効性について検討する。
関連論文リスト
- LLM-enhanced Reranking in Recommender Systems [49.969932092129305]
リグレードはレコメンデーションシステムにおいて重要な要素であり、レコメンデーションアルゴリズムの出力を精査する上で重要な役割を果たす。
そこで我々は,様々な格付け基準をシームレスに統合する包括的格付けフレームワークを提案する。
カスタマイズ可能な入力機構も統合されており、言語モデルのフォーカスを特定の再配置のニーズに合わせることができる。
論文 参考訳(メタデータ) (2024-06-18T09:29:18Z) - Global Convergence of Decentralized Retraction-Free Optimization on the Stiefel Manifold [12.414718831844041]
そこで, DRFGT は, 対応する DRFGT 法に基づいて, 勾配のリトラクションを行うことを示す。
また、DRFGTはエージェントのネットワーク上でリトラクションを行うことができる。
論文 参考訳(メタデータ) (2024-05-19T15:50:57Z) - Energy-Guided Continuous Entropic Barycenter Estimation for General Costs [95.33926437521046]
任意のOTコスト関数に対して連続的エントロピーOT(EOT)バリセンタを近似する新しいアルゴリズムを提案する。
本手法は、弱いOTに基づくEOT問題の二重再構成に基づいている。
論文 参考訳(メタデータ) (2023-10-02T11:24:36Z) - Consciousness-Inspired Spatio-Temporal Abstractions for Better Generalization in Reinforcement Learning [83.41487567765871]
Skipperはモデルベースの強化学習フレームワークである。
これは、与えられたタスクをより小さく、より管理しやすいサブタスクに自動的に一般化する。
環境の関連部分には、スパースな意思決定と集中した抽象化を可能にする。
論文 参考訳(メタデータ) (2023-09-30T02:25:18Z) - Benefits of Permutation-Equivariance in Auction Mechanisms [90.42990121652956]
競売人の収益を最大化しつつ、競売人の過去の後悔を最小限にする競売メカニズムは、経済学において重要であるが複雑な問題である。
ニューラルネットワークによる最適なオークションメカニズムの学習を通じて、注目すべき進歩が達成されている。
論文 参考訳(メタデータ) (2022-10-11T16:13:25Z) - Dynamical Isometry for Residual Networks [8.21292084298669]
RISOTTO は ReLU 活性化機能を持つ残差ネットワークに対して, 有限深さ・幅でも完全な動的等尺性を実現することを示す。
実験では,FixupやSkipInitなど,バッチ正規化を廃止する手法よりも優れた手法が提案されている。
論文 参考訳(メタデータ) (2022-10-05T17:33:23Z) - Bayesian Recurrent Units and the Forward-Backward Algorithm [91.39701446828144]
ベイズの定理を用いることで、ユニットワイド・リカレンスとフォワード・バックワードアルゴリズムに類似した後方再帰を導出する。
その結果得られたベイジアン再帰ユニットは、ディープラーニングフレームワーク内で再帰ニューラルネットワークとして統合することができる。
音声認識の実験は、最先端の繰り返しアーキテクチャの最後に派生したユニットを追加することで、訓練可能なパラメータの点で非常に低コストで性能を向上させることを示唆している。
論文 参考訳(メタデータ) (2022-07-21T14:00:52Z) - Automatic Debiased Machine Learning for Dynamic Treatment Effects and
General Nested Functionals [23.31865419578237]
我々は、自動脱バイアス機械学習の考え方を動的治療体制に拡張し、より一般的にネストされた機能に拡張する。
離散的な処理を施した動的処理系に対する多重ロバストな式は、ネスト平均回帰のリース表現器のキャラクタリゼーションにより再定式化可能であることを示す。
論文 参考訳(メタデータ) (2022-03-25T19:54:17Z) - Rectified Max-Value Entropy Search for Bayesian Optimization [54.26984662139516]
我々は、相互情報の概念に基づいて、修正されたMES取得関数を開発する。
その結果、RMESは、いくつかの合成関数ベンチマークと実世界の最適化問題において、MESよりも一貫した改善を示している。
論文 参考訳(メタデータ) (2022-02-28T08:11:02Z) - Successive Convex Approximation Based Off-Policy Optimization for
Constrained Reinforcement Learning [12.523496806744946]
本稿では,一般的な制約付き強化学習問題の解法として,凸近似に基づくオフポリティ最適化(SCAOPO)アルゴリズムを提案する。
時変状態分布と非政治学習によるバイアスにもかかわらず、実現可能な初期点を持つSCAOPOはカルーシュ=クーン=タッカー点に確実に収束することができる。
論文 参考訳(メタデータ) (2021-05-26T13:52:39Z) - Reward Biased Maximum Likelihood Estimation for Reinforcement Learning [13.820705458648233]
マルコフ連鎖の適応制御のためのRBMLE(Reward-Biased Maximum Likelihood Estimate)を提案した。
我々は、現在最先端のアルゴリズムと同様に、$mathcalO( log T)$が$T$の時間的水平線上で後悔していることを示します。
論文 参考訳(メタデータ) (2020-11-16T06:09:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。