Towards Consistent Object Detection via LiDAR-Camera Synergy
- URL: http://arxiv.org/abs/2405.01258v1
- Date: Thu, 2 May 2024 13:04:26 GMT
- Title: Towards Consistent Object Detection via LiDAR-Camera Synergy
- Authors: Kai Luo, Hao Wu, Kefu Yi, Kailun Yang, Wei Hao, Rongdong Hu,
- Abstract summary: This paper introduces an end-to-end Consistency Object Detection (COD) algorithm framework.
It simultaneously obtains an object's position in both point clouds and images and establish their correlation.
To assess the accuracy of the object correlation between point clouds and images, this paper proposes a new evaluation metric, Consistency Precision.
- Score: 17.665362927472973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As human-machine interaction continues to evolve, the capacity for environmental perception is becoming increasingly crucial. Integrating the two most common types of sensory data, images, and point clouds, can enhance detection accuracy. However, currently, no model exists that can simultaneously detect an object's position in both point clouds and images and ascertain their corresponding relationship. This information is invaluable for human-machine interactions, offering new possibilities for their enhancement. In light of this, this paper introduces an end-to-end Consistency Object Detection (COD) algorithm framework that requires only a single forward inference to simultaneously obtain an object's position in both point clouds and images and establish their correlation. Furthermore, to assess the accuracy of the object correlation between point clouds and images, this paper proposes a new evaluation metric, Consistency Precision (CP). To verify the effectiveness of the proposed framework, an extensive set of experiments has been conducted on the KITTI and DAIR-V2X datasets. The study also explored how the proposed consistency detection method performs on images when the calibration parameters between images and point clouds are disturbed, compared to existing post-processing methods. The experimental results demonstrate that the proposed method exhibits excellent detection performance and robustness, achieving end-to-end consistency detection. The source code will be made publicly available at https://github.com/xifen523/COD.
Related papers
- Practical Video Object Detection via Feature Selection and Aggregation [18.15061460125668]
Video object detection (VOD) needs to concern the high across-frame variation in object appearance, and the diverse deterioration in some frames.
Most of contemporary aggregation methods are tailored for two-stage detectors, suffering from high computational costs.
This study invents a very simple yet potent strategy of feature selection and aggregation, gaining significant accuracy at marginal computational expense.
arXiv Detail & Related papers (2024-07-29T02:12:11Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Object-centric Cross-modal Feature Distillation for Event-based Object
Detection [87.50272918262361]
RGB detectors still outperform event-based detectors due to sparsity of the event data and missing visual details.
We develop a novel knowledge distillation approach to shrink the performance gap between these two modalities.
We show that object-centric distillation allows to significantly improve the performance of the event-based student object detector.
arXiv Detail & Related papers (2023-11-09T16:33:08Z) - Quantity-Aware Coarse-to-Fine Correspondence for Image-to-Point Cloud
Registration [4.954184310509112]
Image-to-point cloud registration aims to determine the relative camera pose between an RGB image and a reference point cloud.
Matching individual points with pixels can be inherently ambiguous due to modality gaps.
We propose a framework to capture quantity-aware correspondences between local point sets and pixel patches.
arXiv Detail & Related papers (2023-07-14T03:55:54Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
We propose a Robust Detector (RobustDet) based on adversarially-aware convolution to disentangle gradients for model learning on clean and adversarial images.
Our model effectively disentangles gradients and significantly enhances the detection robustness with maintaining the detection ability on clean images.
arXiv Detail & Related papers (2022-07-13T13:59:59Z) - Comprehensive Analysis of the Object Detection Pipeline on UAVs [16.071349046409885]
We first empirically analyze the influence of seven parameters (quantization, compression, resolution, color model, image distortion, gamma correction, additional channels) in remote sensing applications.
We show that not all parameters have an equal impact on detection accuracy and data throughput, and that by using a suitable compromise between parameters we are able to improve detection accuracy for lightweight object detection models.
arXiv Detail & Related papers (2022-03-01T09:30:01Z) - Summarize and Search: Learning Consensus-aware Dynamic Convolution for
Co-Saliency Detection [139.10628924049476]
Humans perform co-saliency detection by first summarizing the consensus knowledge in the whole group and then searching corresponding objects in each image.
Previous methods usually lack robustness, scalability, or stability for the first process and simply fuse consensus features with image features for the second process.
We propose a novel consensus-aware dynamic convolution model to explicitly and effectively perform the "summarize and search" process.
arXiv Detail & Related papers (2021-10-01T12:06:42Z) - Uncertainty-aware Joint Salient Object and Camouflaged Object Detection [43.01556978979627]
We propose a paradigm of leveraging the contradictory information to enhance the detection ability of both salient object detection and camouflaged object detection.
We introduce a similarity measure module to explicitly model the contradicting attributes of these two tasks.
Considering the uncertainty of labeling in both tasks' datasets, we propose an adversarial learning network to achieve both higher order similarity measure and network confidence estimation.
arXiv Detail & Related papers (2021-04-06T16:05:10Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z) - Attention-based Joint Detection of Object and Semantic Part [4.389917490809522]
Our model is created on top of two Faster-RCNN models that share their features to get enhanced representations of both.
Experiments on the PASCAL-Part 2010 dataset show that joint detection can simultaneously improve both object detection and part detection.
arXiv Detail & Related papers (2020-07-05T18:54:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.