論文の概要: Towards Inclusive Face Recognition Through Synthetic Ethnicity Alteration
- arxiv url: http://arxiv.org/abs/2405.01273v2
- Date: Tue, 7 May 2024 03:31:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 18:43:54.908447
- Title: Towards Inclusive Face Recognition Through Synthetic Ethnicity Alteration
- Title(参考訳): 合成倫理変化による包括的顔認識に向けて
- Authors: Praveen Kumar Chandaliya, Kiran Raja, Raghavendra Ramachandra, Zahid Akhtar, Christoph Busch,
- Abstract要約: 我々は、データセットの多様性を高めるために合成顔画像生成法を用いて、民族的変化と肌のトーン修正を探索する。
まず,アジア,黒人,インディアンの3民族を表わすバランスのとれた顔画像データセットを構築し,詳細な分析を行う。
次に、既存のGAN(Generative Adversarial Network-based Image-to-image translation)と多様体学習モデルを用いて、それぞれの民族性を変化させる。
- 参考スコア(独自算出の注目度): 11.451395489475647
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerous studies have shown that existing Face Recognition Systems (FRS), including commercial ones, often exhibit biases toward certain ethnicities due to under-represented data. In this work, we explore ethnicity alteration and skin tone modification using synthetic face image generation methods to increase the diversity of datasets. We conduct a detailed analysis by first constructing a balanced face image dataset representing three ethnicities: Asian, Black, and Indian. We then make use of existing Generative Adversarial Network-based (GAN) image-to-image translation and manifold learning models to alter the ethnicity from one to another. A systematic analysis is further conducted to assess the suitability of such datasets for FRS by studying the realistic skin-tone representation using Individual Typology Angle (ITA). Further, we also analyze the quality characteristics using existing Face image quality assessment (FIQA) approaches. We then provide a holistic FRS performance analysis using four different systems. Our findings pave the way for future research works in (i) developing both specific ethnicity and general (any to any) ethnicity alteration models, (ii) expanding such approaches to create databases with diverse skin tones, (iii) creating datasets representing various ethnicities which further can help in mitigating bias while addressing privacy concerns.
- Abstract(参考訳): 多くの研究が、商業的なものを含む既存の顔認識システム(FRS)は、表現不足のデータによって特定の民族に対する偏見を示すことが多いことを示している。
本研究では,データセットの多様性を高めるために合成顔画像生成法を用いて,民族性の変化と肌色の変化について検討する。
まず,アジア,黒人,インディアンの3民族を表わすバランスのとれた顔画像データセットを構築し,詳細な分析を行う。
次に、既存のGAN(Generative Adversarial Network-based Image-to-image translation)と多様体学習モデルを用いて、それぞれの民族性を変化させる。
さらに、個別型付けアングル(ITA)を用いて、現実的な肌色表現を研究することにより、これらのデータセットのFRSに対する適合性を評価するために、体系的な分析を行った。
さらに,既存の顔画像品質評価(FIQA)手法を用いて品質特性を解析する。
次に、4つの異なるシステムを用いて総合的なFRS性能解析を行う。
我々の研究成果は今後の研究の道のりを拓いている。
一 特定の民族と一般の民族変更モデルの両方を発達させること。
(二)このようなアプローチを拡張して、多様な肌色を持つデータベースを作成すること。
三 様々な民族を表わすデータセットを作成し、プライバシー上の懸念に対処しながらバイアスを軽減するのに役立ちます。
関連論文リスト
- ID$^3$: Identity-Preserving-yet-Diversified Diffusion Models for Synthetic Face Recognition [60.15830516741776]
合成顔認識(SFR)は、実際の顔データの分布を模倣するデータセットを生成することを目的としている。
拡散燃料SFRモデルであるtextID3$を紹介します。
textID3$はID保存損失を利用して、多様だがアイデンティティに一貫性のある顔の外観を生成する。
論文 参考訳(メタデータ) (2024-09-26T06:46:40Z) - SDFD: Building a Versatile Synthetic Face Image Dataset with Diverse Attributes [14.966767182001755]
顔の多様性の幅広いスペクトルをキャプチャする合成顔画像データセットを生成する手法を提案する。
具体的には、我々のアプローチは人口統計学とバイオメトリックスを統合するだけでなく、メイクアップ、ヘアスタイル、アクセサリーといった非永続的な特徴も統合しています。
これらのプロンプトは、高品質なリアル画像の包括的なデータセットを生成する際に、最先端のテキスト・ツー・イメージモデルを導く。
論文 参考訳(メタデータ) (2024-04-26T08:51:31Z) - A Comparative Study of Image-to-Image Translation Using GANs for
Synthetic Child Race Data [1.6536018920603175]
本研究では、画像から画像への変換を利用して、異なる人種のデータを合成し、子供の顔データの民族性を調整することを提案する。
我々は、民族をスタイルとみなし、コーカサス人の児童データとアジア人の児童データ変換を実装するために、3つの異なる画像と画像のニューラルネットワークに基づく手法を比較した。
論文 参考訳(メタデータ) (2023-08-08T12:54:05Z) - Stable Bias: Analyzing Societal Representations in Diffusion Models [72.27121528451528]
本稿では,テキスト・ツー・イメージ(TTI)システムにおける社会的バイアスを探索する新しい手法を提案する。
我々のアプローチは、プロンプト内の性別や民族のマーカーを列挙して生成された画像の変動を特徴づけることに依存している。
我々はこの手法を利用して3つのTTIシステムによって生成された画像を分析し、そのアウトプットが米国の労働人口層と相関しているのに対して、彼らは常に異なる範囲において、限界化されたアイデンティティを低く表現している。
論文 参考訳(メタデータ) (2023-03-20T19:32:49Z) - Learning Diversified Feature Representations for Facial Expression
Recognition in the Wild [97.14064057840089]
本稿では,CNN層が抽出した顔表情認識アーキテクチャの特徴を多様化する機構を提案する。
AffectNet,FER+,RAF-DBの3つの顔表情認識実験の結果,本手法の有効性が示された。
論文 参考訳(メタデータ) (2022-10-17T19:25:28Z) - CIAO! A Contrastive Adaptation Mechanism for Non-Universal Facial
Expression Recognition [80.07590100872548]
本稿では、顔エンコーダの最後の層に異なるデータセットの特定の感情特性を適応させるメカニズムであるContrastive Inhibitory Adaptati On(CIAO)を提案する。
CIAOは、非常にユニークな感情表現を持つ6つの異なるデータセットに対して、表情認識性能が改善されている。
論文 参考訳(メタデータ) (2022-08-10T15:46:05Z) - Assessing Demographic Bias Transfer from Dataset to Model: A Case Study
in Facial Expression Recognition [1.5340540198612824]
2つのメトリクスはデータセットの表現バイアスとステレオタイプバイアスに焦点をあて、もう1つはトレーニングされたモデルの残差バイアスに焦点を当てている。
本稿では、一般的なAffectnetデータセットに基づくFER問題に適用することで、メトリクスの有用性を示す。
論文 参考訳(メタデータ) (2022-05-20T09:40:42Z) - Meta Balanced Network for Fair Face Recognition [51.813457201437195]
我々は、データとアルゴリズムの両方の側面からバイアスを体系的に科学的に研究する。
本稿では,メタバランスネットワーク(MBN)と呼ばれるメタ学習アルゴリズムを提案する。
大規模な実験により、MBNは偏見を緩和し、顔認識において異なる肌のトーンを持つ人々に対してよりバランスの取れたパフォーマンスを学ぶことができた。
論文 参考訳(メタデータ) (2022-05-13T10:25:44Z) - Exploring Racial Bias within Face Recognition via per-subject
Adversarially-Enabled Data Augmentation [15.924281804465252]
本稿では,オブジェクト単位のデータセットバランスの実現を目的とした,新たな逆派生データ拡張手法を提案する。
我々の目的は、様々な人種領域にまたがる顔画像を変換することで、合成データセットを自動構築することである。
両面比較では,提案手法が(人種)少数集団の認識性能に与える影響が示唆された。
論文 参考訳(メタデータ) (2020-04-19T19:46:32Z) - DotFAN: A Domain-transferred Face Augmentation Network for Pose and
Illumination Invariant Face Recognition [94.96686189033869]
本稿では,3次元モデルを用いたドメイン転送型顔強調ネットワーク(DotFAN)を提案する。
DotFANは、他のドメインから収集された既存のリッチフェイスデータセットから抽出された知識に基づいて、入力顔の一連の変種を生成することができる。
実験によると、DotFANは、クラス内の多様性を改善するために、小さな顔データセットを増やすのに有益である。
論文 参考訳(メタデータ) (2020-02-23T08:16:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。