論文の概要: Constrained Reinforcement Learning Under Model Mismatch
- arxiv url: http://arxiv.org/abs/2405.01327v2
- Date: Fri, 3 May 2024 17:24:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 11:57:06.822807
- Title: Constrained Reinforcement Learning Under Model Mismatch
- Title(参考訳): モデルミスマッチによる制約付き強化学習
- Authors: Zhongchang Sun, Sihong He, Fei Miao, Shaofeng Zou,
- Abstract要約: 制約強化学習(RL)に関する既存の研究は、訓練環境における優れた政策を得ることができる。
しかし、実際の環境にデプロイすると、トレーニングと実際の環境の間にモデルミスマッチがあるため、トレーニング中に当初満足していた制約に容易に違反する可能性がある。
我々は,大規模かつ連続的な状態空間に適用可能な最初のアルゴリズムであるロバスト制約付きポリシー最適化(RCPO)アルゴリズムを開発し,トレーニング中の各イテレーションにおいて最悪の報酬改善と制約違反を理論的に保証する。
- 参考スコア(独自算出の注目度): 18.05296241839688
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing studies on constrained reinforcement learning (RL) may obtain a well-performing policy in the training environment. However, when deployed in a real environment, it may easily violate constraints that were originally satisfied during training because there might be model mismatch between the training and real environments. To address the above challenge, we formulate the problem as constrained RL under model uncertainty, where the goal is to learn a good policy that optimizes the reward and at the same time satisfy the constraint under model mismatch. We develop a Robust Constrained Policy Optimization (RCPO) algorithm, which is the first algorithm that applies to large/continuous state space and has theoretical guarantees on worst-case reward improvement and constraint violation at each iteration during the training. We demonstrate the effectiveness of our algorithm on a set of RL tasks with constraints.
- Abstract(参考訳): 制約強化学習(RL)に関する既存の研究は、訓練環境における優れた政策を得ることができる。
しかし、実際の環境にデプロイすると、トレーニングと実際の環境の間にモデルミスマッチがあるため、トレーニング中に当初満足していた制約に容易に違反する可能性がある。
この課題に対処するために、モデル不確実性の下で制約付きRLとして問題を定式化し、そこでは報酬を最適化する優れたポリシーを学習し、同時にモデルミスマッチの下で制約を満たすことを目標とする。
我々は,大規模かつ連続的な状態空間に適用可能な最初のアルゴリズムであるロバスト制約付きポリシー最適化(RCPO)アルゴリズムを開発し,トレーニング中の各イテレーションにおいて最悪の報酬改善と制約違反を理論的に保証する。
本稿では,制約付きRLタスクに対するアルゴリズムの有効性を示す。
関連論文リスト
- Probabilistic Satisfaction of Temporal Logic Constraints in Reinforcement Learning via Adaptive Policy-Switching [0.0]
Constrained Reinforcement Learning (CRL)は、従来の強化学習(RL)フレームワークに制約を導入する機械学習のサブセットである。
純粋学習(逆)と制約満足度を切り替えることに依存する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-10-10T15:19:45Z) - Joint Demonstration and Preference Learning Improves Policy Alignment with Human Feedback [58.049113055986375]
我々は、報酬モデルとポリシーをトレーニングするために、AIHF(Alignment with Integrated Human Feedback)と呼ばれる単一ステージアプローチを開発する。
提案した手法は、一般的なアライメントアルゴリズムに容易に還元し、活用できる、効率的なアルゴリズムの集合を認めている。
本研究では,LLMにおけるアライメント問題と,MuJoCoにおけるロボット制御問題を含む広範な実験により,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-06-11T01:20:53Z) - Resilient Constrained Reinforcement Learning [87.4374430686956]
本稿では,複数の制約仕様を事前に特定しない制約付き強化学習(RL)のクラスについて検討する。
報酬訓練目標と制約満足度との間に不明確なトレードオフがあるため、適切な制約仕様を特定することは困難である。
我々は、ポリシーと制約仕様を一緒に検索する新しい制約付きRLアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-28T18:28:23Z) - Reinforcement Learning with Stepwise Fairness Constraints [50.538878453547966]
本稿では,段階的公正性制約を伴う強化学習について紹介する。
我々は、ポリシーの最適性と公正性違反に関して、強力な理論的保証を持つ学習アルゴリズムを提供する。
論文 参考訳(メタデータ) (2022-11-08T04:06:23Z) - Model-based Safe Deep Reinforcement Learning via a Constrained Proximal
Policy Optimization Algorithm [4.128216503196621]
オンライン方式で環境の遷移動態を学習する,オンライン型モデルに基づくセーフディープRLアルゴリズムを提案する。
我々は,本アルゴリズムがより標本効率が高く,制約付きモデルフリーアプローチと比較して累積的ハザード違反が低いことを示す。
論文 参考訳(メタデータ) (2022-10-14T06:53:02Z) - COptiDICE: Offline Constrained Reinforcement Learning via Stationary
Distribution Correction Estimation [73.17078343706909]
オフラインの制約付き強化学習(RL)問題。エージェントは、所定のコスト制約を満たしながら期待されるリターンを最大化するポリシーを計算し、事前に収集されたデータセットからのみ学習する。
定常分布空間におけるポリシーを最適化するオフライン制約付きRLアルゴリズムを提案する。
我々のアルゴリズムであるCOptiDICEは、コスト上限を制約しながら、利益に対する最適政策の定常分布補正を直接見積もる。
論文 参考訳(メタデータ) (2022-04-19T15:55:47Z) - MUSBO: Model-based Uncertainty Regularized and Sample Efficient Batch
Optimization for Deployment Constrained Reinforcement Learning [108.79676336281211]
データ収集とオンライン学習のための新しいポリシーの継続的展開はコスト非効率か非現実的かのどちらかである。
モデルベース不確実性正規化とサンプル効率的なバッチ最適化という新しいアルゴリズム学習フレームワークを提案する。
本フレームワークは,各デプロイメントの新規で高品質なサンプルを発見し,効率的なデータ収集を実現する。
論文 参考訳(メタデータ) (2021-02-23T01:30:55Z) - Constrained Model-Free Reinforcement Learning for Process Optimization [0.0]
強化学習(Reinforcement Learning, RL)は、非線形最適制御問題を扱うための制御手法である。
展示された約束にもかかわらず、RLは産業的な実践への顕著な翻訳をまだ見ていない。
確率の高い共同確率制約の満足度を保証できる「オークル」支援型制約付きQ-ラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-16T13:16:22Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
我々は,制約付きポリシー最適化(CPPO)の実装に基づくRLフレームワークであるGCPOを紹介する。
誘導制約付きRLは所望の最適値に近い高速収束を実現し,正確な報酬関数チューニングを必要とせず,最適かつ物理的に実現可能なロボット制御動作を実現することを示す。
論文 参考訳(メタデータ) (2020-02-22T10:15:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。