Learning Force Control for Legged Manipulation
- URL: http://arxiv.org/abs/2405.01402v2
- Date: Mon, 20 May 2024 12:15:56 GMT
- Title: Learning Force Control for Legged Manipulation
- Authors: Tifanny Portela, Gabriel B. Margolis, Yandong Ji, Pulkit Agrawal,
- Abstract summary: We propose a method for training RL policies for direct force control without requiring access to force sensing.
We showcase our method on a whole-body control platform of a quadruped robot with an arm.
We provide the first deployment of learned whole-body force control in legged manipulators, paving the way for more versatile and adaptable legged robots.
- Score: 18.894304288225385
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Controlling contact forces during interactions is critical for locomotion and manipulation tasks. While sim-to-real reinforcement learning (RL) has succeeded in many contact-rich problems, current RL methods achieve forceful interactions implicitly without explicitly regulating forces. We propose a method for training RL policies for direct force control without requiring access to force sensing. We showcase our method on a whole-body control platform of a quadruped robot with an arm. Such force control enables us to perform gravity compensation and impedance control, unlocking compliant whole-body manipulation. The learned whole-body controller with variable compliance makes it intuitive for humans to teleoperate the robot by only commanding the manipulator, and the robot's body adjusts automatically to achieve the desired position and force. Consequently, a human teleoperator can easily demonstrate a wide variety of loco-manipulation tasks. To the best of our knowledge, we provide the first deployment of learned whole-body force control in legged manipulators, paving the way for more versatile and adaptable legged robots.
Related papers
- Learning Variable Compliance Control From a Few Demonstrations for Bimanual Robot with Haptic Feedback Teleoperation System [5.497832119577795]
dexterous, contact-rich manipulation tasks using rigid robots is a significant challenge in robotics.
Compliance control schemes have been introduced to mitigate these issues by controlling forces via external sensors.
Learning from Demonstrations offers an intuitive alternative, allowing robots to learn manipulations through observed actions.
arXiv Detail & Related papers (2024-06-21T09:03:37Z) - Agile and versatile bipedal robot tracking control through reinforcement learning [12.831810518025309]
This paper proposes a versatile controller for bipedal robots.
It achieves ankle and body trajectory tracking across a wide range of gaits using a single small-scale neural network.
Highly flexible gait control can be achieved by combining minimal control units with high-level policy.
arXiv Detail & Related papers (2024-04-12T05:25:03Z) - Visual Whole-Body Control for Legged Loco-Manipulation [22.50054654508986]
We study the problem of mobile manipulation using legged robots equipped with an arm.
We propose a framework that can conduct the whole-body control autonomously with visual observations.
arXiv Detail & Related papers (2024-03-25T17:26:08Z) - Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
This paper presents a study on using deep reinforcement learning to create dynamic locomotion controllers for bipedal robots.
We develop a general control solution that can be used for a range of dynamic bipedal skills, from periodic walking and running to aperiodic jumping and standing.
This work pushes the limits of agility for bipedal robots through extensive real-world experiments.
arXiv Detail & Related papers (2024-01-30T10:48:43Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
We describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks.
Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples.
experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world.
arXiv Detail & Related papers (2022-12-19T22:50:40Z) - Deep Whole-Body Control: Learning a Unified Policy for Manipulation and
Locomotion [25.35885216505385]
An attached arm can significantly increase the applicability of legged robots to mobile manipulation tasks.
Standard hierarchical control pipeline for such legged manipulators is to decouple the controller into that of manipulation and locomotion.
We learn a unified policy for whole-body control of a legged manipulator using reinforcement learning.
arXiv Detail & Related papers (2022-10-18T17:59:30Z) - In-Hand Object Rotation via Rapid Motor Adaptation [59.59946962428837]
We show how to design and learn a simple adaptive controller to achieve in-hand object rotation using only fingertips.
The controller is trained entirely in simulation on only cylindrical objects.
It can be directly deployed to a real robot hand to rotate dozens of objects with diverse sizes, shapes, and weights over the z-axis.
arXiv Detail & Related papers (2022-10-10T17:58:45Z) - Reinforcement Learning for Robust Parameterized Locomotion Control of
Bipedal Robots [121.42930679076574]
We present a model-free reinforcement learning framework for training robust locomotion policies in simulation.
domain randomization is used to encourage the policies to learn behaviors that are robust across variations in system dynamics.
We demonstrate this on versatile walking behaviors such as tracking a target walking velocity, walking height, and turning yaw.
arXiv Detail & Related papers (2021-03-26T07:14:01Z) - COCOI: Contact-aware Online Context Inference for Generalizable
Non-planar Pushing [87.7257446869134]
General contact-rich manipulation problems are long-standing challenges in robotics.
Deep reinforcement learning has shown great potential in solving robot manipulation tasks.
We propose COCOI, a deep RL method that encodes a context embedding of dynamics properties online.
arXiv Detail & Related papers (2020-11-23T08:20:21Z) - Learning Agile Robotic Locomotion Skills by Imitating Animals [72.36395376558984]
Reproducing the diverse and agile locomotion skills of animals has been a longstanding challenge in robotics.
We present an imitation learning system that enables legged robots to learn agile locomotion skills by imitating real-world animals.
arXiv Detail & Related papers (2020-04-02T02:56:16Z) - Learning Force Control for Contact-rich Manipulation Tasks with Rigid
Position-controlled Robots [9.815369993136512]
We propose a learning-based force control framework combining RL techniques with traditional force control.
Within said control scheme, we implemented two different conventional approaches to achieve force control with position-controlled robots.
Finally, we developed a fail-safe mechanism for safely training an RL agent on manipulation tasks using a real rigid robot manipulator.
arXiv Detail & Related papers (2020-03-02T01:58:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.