Visual Whole-Body Control for Legged Loco-Manipulation
- URL: http://arxiv.org/abs/2403.16967v5
- Date: Sat, 02 Nov 2024 18:04:23 GMT
- Title: Visual Whole-Body Control for Legged Loco-Manipulation
- Authors: Minghuan Liu, Zixuan Chen, Xuxin Cheng, Yandong Ji, Ri-Zhao Qiu, Ruihan Yang, Xiaolong Wang,
- Abstract summary: We study the problem of mobile manipulation using legged robots equipped with an arm.
We propose a framework that can conduct the whole-body control autonomously with visual observations.
- Score: 22.50054654508986
- License:
- Abstract: We study the problem of mobile manipulation using legged robots equipped with an arm, namely legged loco-manipulation. The robot legs, while usually utilized for mobility, offer an opportunity to amplify the manipulation capabilities by conducting whole-body control. That is, the robot can control the legs and the arm at the same time to extend its workspace. We propose a framework that can conduct the whole-body control autonomously with visual observations. Our approach, namely Visual Whole-Body Control(VBC), is composed of a low-level policy using all degrees of freedom to track the body velocities along with the end-effector position, and a high-level policy proposing the velocities and end-effector position based on visual inputs. We train both levels of policies in simulation and perform Sim2Real transfer for real robot deployment. We perform extensive experiments and show significant improvements over baselines in picking up diverse objects in different configurations (heights, locations, orientations) and environments.
Related papers
- Track2Act: Predicting Point Tracks from Internet Videos enables Generalizable Robot Manipulation [65.46610405509338]
We seek to learn a generalizable goal-conditioned policy that enables zero-shot robot manipulation.
Our framework,Track2Act predicts tracks of how points in an image should move in future time-steps based on a goal.
We show that this approach of combining scalably learned track prediction with a residual policy enables diverse generalizable robot manipulation.
arXiv Detail & Related papers (2024-05-02T17:56:55Z) - Agile and versatile bipedal robot tracking control through reinforcement learning [12.831810518025309]
This paper proposes a versatile controller for bipedal robots.
It achieves ankle and body trajectory tracking across a wide range of gaits using a single small-scale neural network.
Highly flexible gait control can be achieved by combining minimal control units with high-level policy.
arXiv Detail & Related papers (2024-04-12T05:25:03Z) - Expressive Whole-Body Control for Humanoid Robots [20.132927075816742]
We learn a whole-body control policy on a human-sized robot to mimic human motions as realistic as possible.
With training in simulation and Sim2Real transfer, our policy can control a humanoid robot to walk in different styles, shake hands with humans, and even dance with a human in the real world.
arXiv Detail & Related papers (2024-02-26T18:09:24Z) - Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
This paper presents a study on using deep reinforcement learning to create dynamic locomotion controllers for bipedal robots.
We develop a general control solution that can be used for a range of dynamic bipedal skills, from periodic walking and running to aperiodic jumping and standing.
This work pushes the limits of agility for bipedal robots through extensive real-world experiments.
arXiv Detail & Related papers (2024-01-30T10:48:43Z) - Polybot: Training One Policy Across Robots While Embracing Variability [70.74462430582163]
We propose a set of key design decisions to train a single policy for deployment on multiple robotic platforms.
Our framework first aligns the observation and action spaces of our policy across embodiments via utilizing wrist cameras.
We evaluate our method on a dataset collected over 60 hours spanning 6 tasks and 3 robots with varying joint configurations and sizes.
arXiv Detail & Related papers (2023-07-07T17:21:16Z) - Real-World Humanoid Locomotion with Reinforcement Learning [92.85934954371099]
We present a fully learning-based approach for real-world humanoid locomotion.
Our controller can walk over various outdoor terrains, is robust to external disturbances, and can adapt in context.
arXiv Detail & Related papers (2023-03-06T18:59:09Z) - Deep Whole-Body Control: Learning a Unified Policy for Manipulation and
Locomotion [25.35885216505385]
An attached arm can significantly increase the applicability of legged robots to mobile manipulation tasks.
Standard hierarchical control pipeline for such legged manipulators is to decouple the controller into that of manipulation and locomotion.
We learn a unified policy for whole-body control of a legged manipulator using reinforcement learning.
arXiv Detail & Related papers (2022-10-18T17:59:30Z) - Agile Maneuvers in Legged Robots: a Predictive Control Approach [20.55884151818753]
We present a contact-phase predictive and state-feedback controllers that enables legged robots to plan and perform agile locomotion skills.
Our work is the first to show that predictive control can handle actuation limits, generate agile locomotion maneuvers and execute locally optimal feedback policies on hardware without the use of a separate whole-body controller.
arXiv Detail & Related papers (2022-03-14T23:32:17Z) - A Transferable Legged Mobile Manipulation Framework Based on Disturbance
Predictive Control [15.044159090957292]
Legged mobile manipulation, where a quadruped robot is equipped with a robotic arm, can greatly enhance the performance of the robot.
We propose a unified framework disturbance predictive control where a reinforcement learning scheme with a latent dynamic adapter is embedded into our proposed low-level controller.
arXiv Detail & Related papers (2022-03-02T14:54:10Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - Learning Quadrupedal Locomotion over Challenging Terrain [68.51539602703662]
Legged locomotion can dramatically expand the operational domains of robotics.
Conventional controllers for legged locomotion are based on elaborate state machines that explicitly trigger the execution of motion primitives and reflexes.
Here we present a radically robust controller for legged locomotion in challenging natural environments.
arXiv Detail & Related papers (2020-10-21T19:11:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.