Random Pareto front surfaces
- URL: http://arxiv.org/abs/2405.01404v2
- Date: Fri, 21 Jun 2024 09:58:51 GMT
- Title: Random Pareto front surfaces
- Authors: Ben Tu, Nikolas Kantas, Robert M. Lee, Behrang Shafei,
- Abstract summary: Multi-objective optimisation aims to identify the set obtained by connecting the best trade-off points.
We show that any Pareto front surface can be equivalently represented using a scalar-valued length function.
We then discuss how these can be used in practice within a design of experiments setting.
- Score: 4.12484724941528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The goal of multi-objective optimisation is to identify the Pareto front surface which is the set obtained by connecting the best trade-off points. Typically this surface is computed by evaluating the objectives at different points and then interpolating between the subset of the best evaluated trade-off points. In this work, we propose to parameterise the Pareto front surface using polar coordinates. More precisely, we show that any Pareto front surface can be equivalently represented using a scalar-valued length function which returns the projected length along any positive radial direction. We then use this representation in order to rigorously develop the theory and applications of stochastic Pareto front surfaces. In particular, we derive many Pareto front surface statistics of interest such as the expectation, covariance and quantiles. We then discuss how these can be used in practice within a design of experiments setting, where the goal is to both infer and use the Pareto front surface distribution in order to make effective decisions. Our framework allows for clear uncertainty quantification and we also develop advanced visualisation techniques for this purpose. Finally we discuss the applicability of our ideas within multivariate extreme value theory and illustrate our methodology in a variety of numerical examples, including a case study with a real-world air pollution data set.
Related papers
- Robust Two-View Geometry Estimation with Implicit Differentiation [2.048226951354646]
We present a novel two-view geometry estimation framework.
It is based on a differentiable robust loss function fitting.
We evaluate our approach on the camera pose estimation task in both outdoor and indoor scenarios.
arXiv Detail & Related papers (2024-10-23T15:51:33Z) - MAP: Low-compute Model Merging with Amortized Pareto Fronts via Quadratic Approximation [80.47072100963017]
We introduce a novel and low-compute algorithm, Model Merging with Amortized Pareto Front (MAP)
MAP efficiently identifies a set of scaling coefficients for merging multiple models, reflecting the trade-offs involved.
We also introduce Bayesian MAP for scenarios with a relatively low number of tasks and Nested MAP for situations with a high number of tasks, further reducing the computational cost of evaluation.
arXiv Detail & Related papers (2024-06-11T17:55:25Z) - Data-Driven Preference Sampling for Pareto Front Learning [10.70174844791007]
We propose a data-driven preference vector sampling framework for Pareto front learning.
We use the posterior information of the objective functions to adjust the parameters of the sampling distribution flexibly.
We design the distribution of the preference vector as a mixture of Dirichlet distributions to improve the performance of the model.
arXiv Detail & Related papers (2024-04-12T11:06:22Z) - DVMNet: Computing Relative Pose for Unseen Objects Beyond Hypotheses [59.51874686414509]
Current approaches approximate the continuous pose representation with a large number of discrete pose hypotheses.
We present a Deep Voxel Matching Network (DVMNet) that eliminates the need for pose hypotheses and computes the relative object pose in a single pass.
Our method delivers more accurate relative pose estimates for novel objects at a lower computational cost compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-03-20T15:41:32Z) - UMOEA/D: A Multiobjective Evolutionary Algorithm for Uniform Pareto
Objectives based on Decomposition [19.13435817442015]
Multiobjective optimization (MOO) is prevalent in numerous applications.
Previous methods commonly utilize the set of Pareto objectives (particles on the PF) to represent the entire PF.
We suggest in this paper constructing emphuniformly distributed objectives on PF, so as to alleviate the limited diversity found in previous MOO approaches.
arXiv Detail & Related papers (2024-02-14T08:09:46Z) - Diffeomorphic Mesh Deformation via Efficient Optimal Transport for Cortical Surface Reconstruction [40.73187749820041]
Mesh deformation plays a pivotal role in many 3D vision tasks including dynamic simulations, rendering, and reconstruction.
A prevalent approach in current deep learning is the set-based approach which measures the discrepancy between two surfaces by comparing two randomly sampled point-clouds from the two meshes with Chamfer pseudo-distance.
We propose a novel metric for learning mesh deformation, defined by sliced Wasserstein distance on meshes represented as probability measures that generalize the set-based approach.
arXiv Detail & Related papers (2023-05-27T19:10:19Z) - MultiZenoTravel: a Tunable Benchmark for Multi-Objective Planning with
Known Pareto Front [71.19090689055054]
Multi-objective AI planning suffers from a lack of benchmarks exhibiting known Pareto Fronts.
We propose a tunable benchmark generator, together with a dedicated solver that provably computes the true Pareto front of the resulting instances.
We show how to characterize the optimal plans for a constrained version of the problem, and then show how to reduce the general problem to the constrained one.
arXiv Detail & Related papers (2023-04-28T07:09:23Z) - Pareto Manifold Learning: Tackling multiple tasks via ensembles of
single-task models [50.33956216274694]
In Multi-Task Learning (MTL), tasks may compete and limit the performance achieved on each other, rather than guiding the optimization to a solution.
We propose textitPareto Manifold Learning, an ensembling method in weight space.
arXiv Detail & Related papers (2022-10-18T11:20:54Z) - Sensing Cox Processes via Posterior Sampling and Positive Bases [56.82162768921196]
We study adaptive sensing of point processes, a widely used model from spatial statistics.
We model the intensity function as a sample from a truncated Gaussian process, represented in a specially constructed positive basis.
Our adaptive sensing algorithms use Langevin dynamics and are based on posterior sampling (textscCox-Thompson) and top-two posterior sampling (textscTop2) principles.
arXiv Detail & Related papers (2021-10-21T14:47:06Z) - Pareto Navigation Gradient Descent: a First-Order Algorithm for
Optimization in Pareto Set [17.617944390196286]
Modern machine learning applications, such as multi-task learning, require finding optimal model parameters to trade-off multiple objective functions.
We propose a first-order algorithm that approximately solves OPT-in-Pareto using only gradient information.
arXiv Detail & Related papers (2021-10-17T04:07:04Z) - Optimal Bayesian experimental design for subsurface flow problems [77.34726150561087]
We propose a novel approach for development of chaos expansion (PCE) surrogate model for the design utility function.
This novel technique enables the derivation of a reasonable quality response surface for the targeted objective function with a computational budget comparable to several single-point evaluations.
arXiv Detail & Related papers (2020-08-10T09:42:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.