論文の概要: Improving Domain Generalization on Gaze Estimation via Branch-out Auxiliary Regularization
- arxiv url: http://arxiv.org/abs/2405.01439v1
- Date: Thu, 2 May 2024 16:26:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 15:55:39.748446
- Title: Improving Domain Generalization on Gaze Estimation via Branch-out Auxiliary Regularization
- Title(参考訳): 分枝型補助正規化による注視推定における領域一般化の改善
- Authors: Ruijie Zhao, Pinyan Tang, Sihui Luo,
- Abstract要約: ブランチアウト補助正規化(BAR)は、ターゲットドメインデータに直接アクセスすることなく、視線推定の一般化能力を高めるように設計されている。
Barは2つの補助的な整合性正規化ブランチを統合している。ひとつは環境変動に対処するために強化サンプルを使用するもので、もうひとつは、一貫した視線特徴の学習を促進するために、視線方向を正のソース領域サンプルと整列するものだ。
- 参考スコア(独自算出の注目度): 3.3539987257923247
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite remarkable advancements, mainstream gaze estimation techniques, particularly appearance-based methods, often suffer from performance degradation in uncontrolled environments due to variations in illumination and individual facial attributes. Existing domain adaptation strategies, limited by their need for target domain samples, may fall short in real-world applications. This letter introduces Branch-out Auxiliary Regularization (BAR), an innovative method designed to boost gaze estimation's generalization capabilities without requiring direct access to target domain data. Specifically, BAR integrates two auxiliary consistency regularization branches: one that uses augmented samples to counteract environmental variations, and another that aligns gaze directions with positive source domain samples to encourage the learning of consistent gaze features. These auxiliary pathways strengthen the core network and are integrated in a smooth, plug-and-play manner, facilitating easy adaptation to various other models. Comprehensive experimental evaluations on four cross-dataset tasks demonstrate the superiority of our approach.
- Abstract(参考訳): 顕著な進歩にもかかわらず、主流の視線推定技術、特に外見に基づく手法は、照明のバリエーションや個々の顔特性によって、制御されていない環境での性能劣化に悩まされることが多い。
既存のドメイン適応戦略は、対象のドメインサンプルの必要性によって制限され、現実世界のアプリケーションでは不足する可能性がある。
このレターでは、ターゲットドメインデータに直接アクセスすることなく、視線推定の一般化能力を向上する革新的な手法であるブランチアウト補助正規化(BAR)を紹介する。
具体的には、BARは2つの補助的な整合性正規化ブランチを統合している。ひとつは、拡張サンプルを使用して環境変動を防止し、もうひとつは、視線方向を正のソース領域サンプルと整合させて、一貫した視線特徴の学習を促進するものだ。
これらの補助経路はコアネットワークを強化し、スムーズでプラグアンドプレイな方法で統合され、他の様々なモデルに容易に適応できる。
4つのクロスデータセットタスクに関する総合的な実験的評価は、我々のアプローチの優位性を示している。
関連論文リスト
- CLIP-Gaze: Towards General Gaze Estimation via Visual-Linguistic Model [13.890404285565225]
本稿では、事前学習された視覚言語モデルを用いて、その伝達可能な知識を活用するCLIP-Gazeという新しいフレームワークを提案する。
我々のフレームワークは、視線推定タスクに視覚・言語間の相互モダリティアプローチを利用した最初のものである。
論文 参考訳(メタデータ) (2024-03-08T07:37:21Z) - Gradient Alignment for Cross-Domain Face Anti-Spoofing [26.517887637150594]
本稿では,新たな学習目標であるGAC-FASを紹介する。
従来のシャープネス対応最小化器とは異なり、GAC-FASは各領域の上昇点を特定し、一般化勾配の更新を制御する。
ドメイン間FASデータセットの厳密な検証によりGAC-FASの有効性を実証する。
論文 参考訳(メタデータ) (2024-02-29T02:57:44Z) - HCVP: Leveraging Hierarchical Contrastive Visual Prompt for Domain
Generalization [69.33162366130887]
ドメイン一般化(DG)は、不変の機能を学ぶことによって、目に見えないシナリオに優れた機械学習モデルを作成するための取り組みである。
モデルにドメインレベルとタスク固有の特性を補足する新しい手法を提案する。
このアプローチは、特定の特徴から不変な特徴をより効果的に分離し、一般化を促進することを目的としている。
論文 参考訳(メタデータ) (2024-01-18T04:23:21Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - NormAUG: Normalization-guided Augmentation for Domain Generalization [60.159546669021346]
ディープラーニングのためのNormAUG(Normalization-guided Augmentation)と呼ばれるシンプルで効果的な手法を提案する。
本手法は特徴レベルで多様な情報を導入し,主経路の一般化を改善する。
テスト段階では、アンサンブル戦略を利用して、モデルの補助経路からの予測を組み合わせ、さらなる性能向上を図る。
論文 参考訳(メタデータ) (2023-07-25T13:35:45Z) - Feature Diversity Learning with Sample Dropout for Unsupervised Domain
Adaptive Person Re-identification [0.0]
本稿では,ノイズの多い擬似ラベルを限定することで,より優れた一般化能力を持つ特徴表現を学習する手法を提案する。
我々は,古典的な相互学習アーキテクチャの下で,FDL(Feature Diversity Learning)と呼ばれる新しい手法を提案する。
実験の結果,提案するFDL-SDは,複数のベンチマークデータセット上での最先端性能を実現することがわかった。
論文 参考訳(メタデータ) (2022-01-25T10:10:48Z) - Generalizing Interactive Backpropagating Refinement for Dense Prediction [0.0]
本稿では,G-BRSレイヤの集合を導入し,グローバル・ローカライズド・リファインメントとローカライズド・リファインメントの両立を可能にした。
提案手法は,数クリックで既存の事前訓練された最先端モデルの性能を向上する。
論文 参考訳(メタデータ) (2021-12-21T03:52:08Z) - Semi-Supervised Domain Generalization with Stochastic StyleMatch [90.98288822165482]
実世界のアプリケーションでは、アノテーションのコストが高いため、各ソースドメインから利用可能なラベルはわずかです。
本研究では,より現実的で実践的な半教師付き領域一般化について検討する。
提案手法であるStyleMatchは,擬似ラベルに基づく最先端の半教師付き学習手法であるFixMatchに着想を得たものである。
論文 参考訳(メタデータ) (2021-06-01T16:00:08Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
個人再識別のための教師なし領域適応手法を提案する。
実験結果から,ktCUDA法とSHRED法は,再同定性能において,+5.7 mAPの平均的改善を実現することがわかった。
論文 参考訳(メタデータ) (2020-01-14T17:43:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。