Saturation of the Multiparameter Quantum Cramér-Rao Bound at the Single-Copy Level with Projective Measurements
- URL: http://arxiv.org/abs/2405.01471v1
- Date: Thu, 2 May 2024 17:04:13 GMT
- Title: Saturation of the Multiparameter Quantum Cramér-Rao Bound at the Single-Copy Level with Projective Measurements
- Authors: Hendra I. Nurdin,
- Abstract summary: It was not known when the quantum Cram'er-Rao bound can be saturated (achieved) when only a single copy of the quantum state is available.
In this paper, key structural properties of optimal measurements that saturate the quantum Cram'er-Rao bound are illuminated.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum parameter estimation theory is an important component of quantum information theory and provides the statistical foundation that underpins important topics such as quantum system identification and quantum waveform estimation. When there is more than one parameter the ultimate precision in the mean square error given by the quantum Cram\'er-Rao bound is not necessarily achievable. For non-full rank quantum states, it was not known when this bound can be saturated (achieved) when only a single copy of the quantum state encoding the unknown parameters is available. This single-copy scenario is important because of its experimental/practical tractability. Recently, necessary and sufficient conditions for saturability of the quantum Cram\'er-Rao bound in the multiparameter single-copy scenario have been established in terms of i) the commutativity of a set of projected symmetric logarithmic derivatives and ii) the existence of a unitary solution to a system of coupled nonlinear partial differential equations. New sufficient conditions were also obtained that only depend on properties of the symmetric logarithmic derivatives. In this paper, key structural properties of optimal measurements that saturate the quantum Cram\'er-Rao bound are illuminated. These properties are exploited to i) show that the sufficient conditions are in fact necessary and sufficient for an optimal measurement to be projective, ii) give an alternative proof of previously established necessary conditions, and iii) describe general POVMs, not necessarily projective, that saturate the multiparameter QCRB. Examples are given where a unitary solution to the system of nonlinear partial differential equations can be explicitly calculated when the required conditions are fulfilled.
Related papers
- Single-Round Proofs of Quantumness from Knowledge Assumptions [41.94295877935867]
A proof of quantumness is an efficiently verifiable interactive test that an efficient quantum computer can pass.
Existing single-round protocols require large quantum circuits, whereas multi-round ones use smaller circuits but require experimentally challenging mid-circuit measurements.
We construct efficient single-round proofs of quantumness based on existing knowledge assumptions.
arXiv Detail & Related papers (2024-05-24T17:33:10Z) - Dimension matters: precision and incompatibility in multi-parameter
quantum estimation models [44.99833362998488]
We study the role of probe dimension in determining the bounds of precision in quantum estimation problems.
We also critically examine the performance of the so-called incompatibility (AI) in characterizing the difference between the Holevo-Cram'er-Rao bound and the Symmetric Logarithmic Derivative (SLD) one.
arXiv Detail & Related papers (2024-03-11T18:59:56Z) - Saturability of the Quantum Cramér-Rao Bound in Multiparameter Quantum Estimation at the Single-Copy Level [0.0]
The quantum Cram'er-Rao bound (QCRB) is the ultimate lower bound for precision in quantum parameter estimation.
This paper establishes necessary and sufficient conditions for saturability of the QCRB in the single-copy setting.
arXiv Detail & Related papers (2024-02-18T12:30:04Z) - Quantum State Tomography for Matrix Product Density Operators [28.799576051288888]
Reconstruction of quantum states from experimental measurements is crucial for the verification and benchmarking of quantum devices.
Many physical quantum states, such as states generated by noisy, intermediate-scale quantum computers, are usually structured.
We establish theoretical guarantees for the stable recovery of MPOs using tools from compressive sensing and the theory of empirical processes.
arXiv Detail & Related papers (2023-06-15T18:23:55Z) - Variational Approach to Quantum State Tomography based on Maximal
Entropy Formalism [3.6344381605841187]
We employ the maximal entropy formalism to construct the least biased mixed quantum state that is consistent with the given set of expectation values.
We employ a parameterized quantum circuit and a hybrid quantum-classical variational algorithm to obtain such a target state making our recipe easily implementable on a near-term quantum device.
arXiv Detail & Related papers (2022-06-06T01:16:22Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Incompatibility measures in multi-parameter quantum estimation under
hierarchical quantum measurements [4.980960723762946]
We show an approach to study the incompatibility under general $p$-local measurements.
We demonstrate the power of the approach by presenting a hierarchy of analytical bounds on the tradeoff.
arXiv Detail & Related papers (2021-09-13T09:33:47Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - On the properties of the asymptotic incompatibility measure in
multiparameter quantum estimation [62.997667081978825]
Incompatibility (AI) is a measure which quantifies the difference between the Holevo and the SLD scalar bounds.
We show that the maximum amount of AI is attainable only for quantum statistical models characterized by a purity larger than $mu_sf min = 1/(d-1)$.
arXiv Detail & Related papers (2021-07-28T15:16:37Z) - On the quantumness of multiparameter estimation problems for qubit
systems [0.0]
We consider several estimation problems for qubit systems and evaluate the corresponding quantumness R.
R is an upper bound for the renormalized difference between the (asymptotically achievable) Holevo bound and the SLD Cram'er-Rao bound.
arXiv Detail & Related papers (2020-10-23T19:21:50Z) - Quantum Fisher information measurement and verification of the quantum
Cram\'er-Rao bound in a solid-state qubit [11.87072483257275]
We experimentally demonstrate near saturation of the quantum Cram'er-Rao bound in the phase estimation of a solid-state spin system.
This is achieved by comparing the experimental uncertainty in phase estimation with an independent measurement of the related quantum Fisher information.
arXiv Detail & Related papers (2020-03-18T17:51:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.