Predicting symmetries of quantum dynamics with optimal samples
- URL: http://arxiv.org/abs/2502.01464v1
- Date: Mon, 03 Feb 2025 15:57:50 GMT
- Title: Predicting symmetries of quantum dynamics with optimal samples
- Authors: Masahito Hayashi, Yu-Ao Chen, Chenghong Zhu, Xin Wang,
- Abstract summary: Identifying symmetries in quantum dynamics is a crucial challenge with profound implications for quantum technologies.
We introduce a unified framework combining group representation theory and subgroup hypothesis testing to predict these symmetries with optimal efficiency.
We prove that parallel strategies achieve the same performance as adaptive or indefinite-causal-order protocols.
- Score: 41.42817348756889
- License:
- Abstract: Identifying symmetries in quantum dynamics, such as identity or time-reversal invariance, is a crucial challenge with profound implications for quantum technologies. We introduce a unified framework combining group representation theory and subgroup hypothesis testing to predict these symmetries with optimal efficiency. By exploiting the inherent symmetry of compact groups and their irreducible representations, we derive an exact characterization of the optimal type-II error (failure probability to detect a symmetry), offering an operational interpretation for the quantum max-relative entropy. In particular, we prove that parallel strategies achieve the same performance as adaptive or indefinite-causal-order protocols, resolving debates about the necessity of complex control sequences. Applications to the singleton group, maximal commutative group, and orthogonal group yield explicit results: for predicting the identity property, Z-symmetry, and T-symmetry of unknown qubit unitaries, with zero type-I error and type-II error bounded by $\delta$, we establish the explicit optimal sample complexity which scales as $\mathcal{O}(\delta^{-1/3})$ for identity testing and $\mathcal{O}(\delta^{-1/2})$ for T/Z-symmetry testing. These findings offer theoretical insights and practical guidelines for efficient unitary property testing and symmetry-driven protocols in quantum information processing.
Related papers
- Hypothesis testing of symmetry in quantum dynamics [4.385096865598734]
We develop a hypothesis-testing framework for quantum dynamics symmetry using a limited number of queries.
We construct optimal ancilla-free protocols that achieve optimal type-II error probability for testing time-reversal symmetry (T-symmetry) and diagonal symmetry (Z-symmetry) with limited queries.
arXiv Detail & Related papers (2024-11-21T16:39:35Z) - Quantum error correction-inspired multiparameter quantum metrology [0.029541734875307393]
We present a strategy for obtaining optimal probe states and measurement schemes in a class of noiseless estimation problems with symmetry among the generators.
The key to the framework is the introduction of a set of quantum metrology conditions, analogous to the quantum error correction conditions of Knill and Laflamme.
We show that tetrahedral symmetry and, with fine-tuning, $S_3$ symmetry, are minimal symmetry groups providing optimal probe states for SU(2) estimation.
arXiv Detail & Related papers (2024-09-25T00:06:12Z) - Entanglement and the density matrix renormalisation group in the generalised Landau paradigm [0.0]
We leverage the interplay between gapped phases and dualities of symmetric one-dimensional quantum lattice models.
For every phase in the phase diagram, the dual representation of the ground state that breaks all symmetries minimises both the entanglement entropy and the required number of variational parameters.
Our work testifies to the usefulness of generalised non-invertible symmetries and their formal category theoretic description for the nuts and bolts simulation of strongly correlated systems.
arXiv Detail & Related papers (2024-08-12T17:51:00Z) - Solving the homogeneous Bethe-Salpeter equation with a quantum annealer [34.173566188833156]
The homogeneous Bethe-Salpeter equation (hBSE) was solved for the first time by using a D-Wave quantum annealer.
A broad numerical analysis of the proposed algorithms was carried out using both the proprietary simulated-anneaing package and the D-Wave Advantage 4.1 system.
arXiv Detail & Related papers (2024-06-26T18:12:53Z) - Dimension matters: precision and incompatibility in multi-parameter
quantum estimation models [44.99833362998488]
We study the role of probe dimension in determining the bounds of precision in quantum estimation problems.
We also critically examine the performance of the so-called incompatibility (AI) in characterizing the difference between the Holevo-Cram'er-Rao bound and the Symmetric Logarithmic Derivative (SLD) one.
arXiv Detail & Related papers (2024-03-11T18:59:56Z) - General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory [44.99833362998488]
We introduce quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple quantum numbers.
The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions.
The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories.
arXiv Detail & Related papers (2022-12-28T18:56:25Z) - Symmetric Pruning in Quantum Neural Networks [111.438286016951]
Quantum neural networks (QNNs) exert the power of modern quantum machines.
QNNs with handcraft symmetric ansatzes generally experience better trainability than those with asymmetric ansatzes.
We propose the effective quantum neural tangent kernel (EQNTK) to quantify the convergence of QNNs towards the global optima.
arXiv Detail & Related papers (2022-08-30T08:17:55Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - The quantum marginal problem for symmetric states: applications to
variational optimization, nonlocality and self-testing [0.0]
We present a method to solve the quantum marginal problem for symmetric $d$-level systems.
We illustrate the applicability of the method in central quantum information problems with several exemplary case studies.
arXiv Detail & Related papers (2020-01-13T18:20:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.