論文の概要: Prometheus 2: An Open Source Language Model Specialized in Evaluating Other Language Models
- arxiv url: http://arxiv.org/abs/2405.01535v2
- Date: Wed, 04 Dec 2024 19:23:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:37:41.849085
- Title: Prometheus 2: An Open Source Language Model Specialized in Evaluating Other Language Models
- Title(参考訳): Prometheus 2: 他の言語モデルを評価するためのオープンソース言語モデル
- Authors: Seungone Kim, Juyoung Suk, Shayne Longpre, Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham Neubig, Moontae Lee, Kyungjae Lee, Minjoon Seo,
- Abstract要約: プロメテウス2は、人間とGPT-4の判断を密接に反映するより強力な評価器である。
ユーザ定義評価基準でグループ化された、直接評価とペアのランキングフォーマットの両方を処理できる。
4つの直接評価ベンチマークと4つのペアのランキングベンチマークで、Prometheus 2は人間と独自のLM判事との相関と合意を最も高く評価している。
- 参考スコア(独自算出の注目度): 92.66784679667441
- License:
- Abstract: Proprietary LMs such as GPT-4 are often employed to assess the quality of responses from various LMs. However, concerns including transparency, controllability, and affordability strongly motivate the development of open-source LMs specialized in evaluations. On the other hand, existing open evaluator LMs exhibit critical shortcomings: 1) they issue scores that significantly diverge from those assigned by humans, and 2) they lack the flexibility to perform both direct assessment and pairwise ranking, the two most prevalent forms of assessment. Additionally, they do not possess the ability to evaluate based on custom evaluation criteria, focusing instead on general attributes like helpfulness and harmlessness. To address these issues, we introduce Prometheus 2, a more powerful evaluator LM than its predecessor that closely mirrors human and GPT-4 judgements. Moreover, it is capable of processing both direct assessment and pair-wise ranking formats grouped with a user-defined evaluation criteria. On four direct assessment benchmarks and four pairwise ranking benchmarks, Prometheus 2 scores the highest correlation and agreement with humans and proprietary LM judges among all tested open evaluator LMs. Our models, code, and data are all publicly available at https://github.com/prometheus-eval/prometheus-eval.
- Abstract(参考訳): GPT-4のようなプロプライエタリなLMは、様々なLMからの応答の質を評価するためにしばしば用いられる。
しかし、透明性、制御可能性、手頃な価格といった懸念は、評価に特化したオープンソースLMの開発を強く動機付けている。
一方、既存のオープン評価器 LM には重大な欠点がある。
1)人間に割り当てられたスコアとは大きく異なるスコアを発行し、
2) 直接評価とペアランキングの両方を行う柔軟性が欠如している。
さらに、彼らはカスタム評価基準に基づいて評価する能力を持っておらず、代わりに有用性や無害性といった一般的な属性に焦点を当てている。
これらの問題に対処するために,人間とGPT-4の判断を密接に反映した前者よりも強力な評価器であるPrometheus 2を紹介する。
さらに、ユーザ定義評価基準でグループ化されたダイレクトアセスメントとペアワイズランキングフォーマットの両方を処理できる。
4つの直接評価ベンチマークと4つのペアのランキングベンチマークにおいて、Prometheus 2は、試験された全てのオープン評価器LMの中で、人間とプロプライエタリなLM裁判官との相関と合意を最も高く評価している。
私たちのモデル、コード、データは、すべてhttps://github.com/prometheus-eval/prometheus-eval.comで公開されています。
関連論文リスト
- CompassJudger-1: All-in-one Judge Model Helps Model Evaluation and Evolution [74.41064280094064]
textbfJudger-1は、最初のオープンソースのtextbfall-in-one judge LLMである。
CompassJudger-1は、優れた汎用性を示す汎用LLMである。
textbfJudgerBenchは、様々な主観評価タスクを含む新しいベンチマークである。
論文 参考訳(メタデータ) (2024-10-21T17:56:51Z) - Evaluating Quality of Answers for Retrieval-Augmented Generation: A Strong LLM Is All You Need [3.3624592634336814]
本稿では,vRAG-Evalを用いた検索・拡張生成(RAG)アプリケーションにおける回答品質評価の総合的研究について述べる。
品質面の階調をバイナリスコアにマッピングし、受け入れまたは拒否の決定を示す。
このアプローチは、明確な意思決定の意見が不可欠である現実的なビジネスコンテキストに適合します。
論文 参考訳(メタデータ) (2024-06-26T04:49:41Z) - The BiGGen Bench: A Principled Benchmark for Fine-grained Evaluation of Language Models with Language Models [94.31327813151208]
BiGGen Benchは、77のタスクにわたるLMの9つの異なる能力を徹底的に評価するために設計された、原則化された世代ベンチマークである。
BiGGen Benchの重要な特徴は、インスタンス固有の評価基準の使用であり、人間の評価のニュアンスな識別を忠実に反映している。
論文 参考訳(メタデータ) (2024-06-09T12:30:30Z) - Prometheus: Inducing Fine-grained Evaluation Capability in Language
Models [66.12432440863816]
我々は,GPT-4の評価能力に匹敵する,完全にオープンソースなLarge Language Model (LLM) であるPrometheusを提案する。
プロメテウスは45種類の楽譜を用いた評価において、Pearsonの0.897の相関を人間の評価値と比較した。
Prometheusは2つの人間の選好ベンチマークで最も精度が高い。
論文 参考訳(メタデータ) (2023-10-12T16:50:08Z) - Benchmarking Cognitive Biases in Large Language Models as Evaluators [16.845939677403287]
大規模言語モデル(LLM)は、簡単なプロンプトと文脈内学習を備えた自動評価器として有効であることが示されている。
我々は,LLMの認知バイアスベンチマークを導入したランキングアウトプットの品質を評価対象として評価する。
LLMはテキスト品質評価器であり、バイアスベンチマークに強い指標を示す。
論文 参考訳(メタデータ) (2023-09-29T06:53:10Z) - FLASK: Fine-grained Language Model Evaluation based on Alignment Skill Sets [69.91340332545094]
FLASKは、人間に基づく評価とモデルに基づく評価の両方のためのきめ細かい評価プロトコルである。
モデル性能の全体像を得るためには,評価の微粒化が重要であることを実験的に観察する。
論文 参考訳(メタデータ) (2023-07-20T14:56:35Z) - Style Over Substance: Evaluation Biases for Large Language Models [17.13064447978519]
本研究では,大規模言語モデル(LLM)とともに,クラウドソースおよびエキスパートアノテータの挙動について検討する。
この結果から, 事実的誤りに対する回答は, 短すぎる, 文法的誤りを含む回答よりも好意的に評価され, 評価過程の偏りが示唆された。
評価面を1つのスコアにマージするのではなく,複数の次元にまたがるマシン生成テキストを独立に評価することを提案する。
論文 参考訳(メタデータ) (2023-07-06T14:42:01Z) - Revisiting the Gold Standard: Grounding Summarization Evaluation with
Robust Human Evaluation [136.16507050034755]
要約のための既存の人間の評価研究は、アノテータ間の合意が低かったり、スケールが不十分だったりしている。
細粒度セマンティック・ユニットをベースとした改良された要約サリエンス・プロトコルであるAtomic Content Units (ACUs)を提案する。
ロバスト・サムライゼーション・アセスメント(RoSE)ベンチマークは,28の上位性能システム上で22,000の要約レベルのアノテーションからなる大規模な人的評価データセットである。
論文 参考訳(メタデータ) (2022-12-15T17:26:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。