Empirical Studies of Parameter Efficient Methods for Large Language Models of Code and Knowledge Transfer to R
- URL: http://arxiv.org/abs/2405.01553v1
- Date: Sat, 16 Mar 2024 03:12:45 GMT
- Title: Empirical Studies of Parameter Efficient Methods for Large Language Models of Code and Knowledge Transfer to R
- Authors: Amirreza Esmaeili, Iman Saberi, Fatemeh H. Fard,
- Abstract summary: Large Langauge Models (LLMs) have gained a lot of attention in the Software Engineering (SE) community.
In this work, we empirically study PEFT methods, LoRA and Compacter, on CodeT5 and CodeLlama.
We will assess their performance compared to fully fine-tuned models, whether they can be used for knowledge transfer from natural language models to code, and their ability to adapt the learned knowledge to an unseen language.
- Score: 1.9799527196428242
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, Large Langauge Models (LLMs) have gained a lot of attention in the Software Engineering (SE) community. LLMs or their variants pre-trained on code are used for many SE tasks. A main approach for adapting LLMs to the downstream task is to fine-tune the models. However, with having billions-parameters-LLMs, fine-tuning the models is not practical. An alternative approach is using Parameter Efficient Fine Tuning (PEFT), in which the model parameters are frozen and only a few added parameters are trained. Though the LLMs are used for programming languages such as Python and Java widely, their capability for low-resource languages is limited. In this work, we empirically study PEFT methods, LoRA and Compacter, on CodeT5 and CodeLlama. We will assess their performance compared to fully fine-tuned models, whether they can be used for knowledge transfer from natural language models to code (using T5 and Llama models), and their ability to adapt the learned knowledge to an unseen language. For the unseen language, we aim to study R, as it has a wide community. The adaptability with less computational costs makes LLMs accessible in scenarios where heavy computational resources are not available. Moreover, studying R opens new opportunities for using LLMs for other languages. We anticipate our findings to showcase the capabilities of PEFT for code LLMs for R and reveal the improvement areas.
Related papers
- Enhancing Code Generation for Low-Resource Languages: No Silver Bullet [55.39571645315926]
Large Language Models (LLMs) rely on large and diverse datasets to learn syntax, semantics, and usage patterns of programming languages.
For low-resource languages, the limited availability of such data hampers the models' ability to generalize effectively.
We present an empirical study investigating the effectiveness of several approaches for boosting LLMs' performance on low-resource languages.
arXiv Detail & Related papers (2025-01-31T12:23:28Z) - A Comprehensive Evaluation of Parameter-Efficient Fine-Tuning on Method-Level Code Smell Detection [11.9757082688031]
Existing detection methods, relying on Codes or Machine Learning (ML) and Deep Learning (DL) techniques, often face limitations such as unsatisfactory performance.
This study evaluates state-of-the-art PEFT methods on both small and large Language Models for detecting two types of method-level code smells: Complex Conditional and Complex Method.
Results show that PEFT methods achieve comparable or better performance than full fine-tuning while consuming less GPU memory.
arXiv Detail & Related papers (2024-12-18T12:48:36Z) - KaSA: Knowledge-Aware Singular-Value Adaptation of Large Language Models [11.07333593086842]
Knowledge-aware Singular-value Adaptation (KaSA)
We introduce Knowledge-aware Singular-value Adaptation (KaSA), a PEFT method that leverages singular value decomposition (SVD) with knowledge-aware singular values to dynamically activate knowledge based on its relevance to the task at hand.
Experimental results demonstrate that KaSA consistently outperforms FFT and 14 popular PEFT baselines across 16 benchmarks and 4 synthetic datasets.
arXiv Detail & Related papers (2024-12-08T21:26:22Z) - Parameter-Efficient Fine-Tuning of Large Language Models for Unit Test Generation: An Empirical Study [3.5189934649278922]
Large language models (LLMs) like GitHub Copilot struggle with real-world tasks without fine-tuning.
This paper investigates full fine-tuning and various PEFT methods, including LoRA, (IA)3, and prompt tuning.
Our findings show that PEFT methods can deliver performance comparable to full fine-tuning for unit test generation.
arXiv Detail & Related papers (2024-11-04T09:03:18Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - Enhancing Discriminative Tasks by Guiding the Pre-trained Language Model with Large Language Model's Experience [4.814313782484443]
Large Language Models (LLMs) and pre-trained Language Models (LMs) have achieved impressive success on many software engineering tasks.
We use LLMs to generate domain-specific data, thereby improving the performance of pre-trained LMs on the target tasks.
arXiv Detail & Related papers (2024-08-16T06:37:59Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Verbalized Machine Learning: Revisiting Machine Learning with Language Models [63.10391314749408]
We introduce the framework of verbalized machine learning (VML)
VML constrains the parameter space to be human-interpretable natural language.
We empirically verify the effectiveness of VML, and hope that VML can serve as a stepping stone to stronger interpretability.
arXiv Detail & Related papers (2024-06-06T17:59:56Z) - Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning [35.03338699349037]
We propose a novel in-context learning framework, FeatLLM, which employs Large Language Models as feature engineers.
FeatLLM generates high-quality rules, significantly (10% on average) outperforming alternatives such as TabLLM and STUNT.
arXiv Detail & Related papers (2024-04-15T06:26:08Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Parameter-Efficient Fine-Tuning Methods for Pretrained Language Models:
A Critical Review and Assessment [12.674032145667763]
We present a comprehensive and systematic review of Efficient Fine-Tuning (PEFT) methods for pretrained language models (PLMs)
PEFT offers an effective solution by reducing the number of fine-tuning parameters and memory usage while achieving comparable performance to full fine-tuning.
We conduct experiments using several representative PEFT methods to better understand their effectiveness in parameter efficiency and memory efficiency.
arXiv Detail & Related papers (2023-12-19T13:31:24Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
Large-scale pre-trained language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks.
However, the massive size of these models poses huge challenges for their deployment in real-world applications.
We introduce a novel compression paradigm called Retrieval-based Knowledge Transfer (RetriKT) which effectively transfers the knowledge of LLMs to extremely small-scale models.
arXiv Detail & Related papers (2023-10-24T07:58:20Z) - Exploring Parameter-Efficient Fine-Tuning Techniques for Code Generation
with Large Language Models [12.708117108874083]
Large Language Models (LLMs) generate code snippets given natural language intents in zero-shot, i.e., without the need for specific fine-tuning.
Previous research explored In-Context Learning (ICL) as a strategy to guide the LLM generative process with task-specific prompt examples.
In this paper, we deliver a comprehensive study of.
PEFT techniques for LLMs under the automated code generation scenario.
arXiv Detail & Related papers (2023-08-21T04:31:06Z) - Knowledge Transfer from High-Resource to Low-Resource Programming Languages for Code LLMs [2.9242435458494445]
This paper presents an effective approach for boosting the performance of Code LLMs on low-resource languages using semi-synthetic data.
We apply this approach to generate tens of thousands of validated training items for Julia, Lua, OCaml, R, and Racket.
arXiv Detail & Related papers (2023-08-19T03:19:01Z) - Scaling Sentence Embeddings with Large Language Models [43.19994568210206]
In this work, we propose an in-context learning-based method aimed at improving sentence embeddings performance.
Our approach involves adapting the previous prompt-based representation method for autoregressive models.
By scaling model size, we find scaling to more than tens of billion parameters harms the performance on semantic textual similarity tasks.
arXiv Detail & Related papers (2023-07-31T13:26:03Z) - Okapi: Instruction-tuned Large Language Models in Multiple Languages
with Reinforcement Learning from Human Feedback [61.83548032416181]
We present Okapi, the first system with instruction-tuned LLMs based on RLHF for multiple languages.
Okapi introduces instruction and response-ranked data in 26 diverse languages to facilitate the experiments and development of future multilingual LLM research.
arXiv Detail & Related papers (2023-07-29T18:01:46Z) - Knowledge-Augmented Reasoning Distillation for Small Language Models in
Knowledge-Intensive Tasks [90.11273439036455]
Large Language Models (LLMs) have shown promising performance in knowledge-intensive reasoning tasks.
We propose Knowledge-Augmented Reasoning Distillation (KARD), a novel method that fine-tunes small LMs to generate rationales from LLMs with augmented knowledge retrieved from an external knowledge base.
We empirically show that KARD significantly improves the performance of small T5 and GPT models on the challenging knowledge-intensive reasoning datasets.
arXiv Detail & Related papers (2023-05-28T13:00:00Z) - Self-Checker: Plug-and-Play Modules for Fact-Checking with Large Language Models [75.75038268227554]
Self-Checker is a framework comprising a set of plug-and-play modules that facilitate fact-checking.
This framework provides a fast and efficient way to construct fact-checking systems in low-resource environments.
arXiv Detail & Related papers (2023-05-24T01:46:07Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.