Empirical Studies of Parameter Efficient Methods for Large Language Models of Code and Knowledge Transfer to R
- URL: http://arxiv.org/abs/2405.01553v2
- Date: Mon, 27 Jan 2025 18:51:36 GMT
- Title: Empirical Studies of Parameter Efficient Methods for Large Language Models of Code and Knowledge Transfer to R
- Authors: Amirreza Esmaeili, Iman Saberi, Fatemeh H. Fard,
- Abstract summary: We evaluate PEFT methods, LoRA, Compacter, and IA3 on Large Language Models for code summarization and generation.<n>Our experiments reveal that LoRA consistently outperforms Compacter and IA3 in all settings.<n>Our study can direct future research in developing code intelligent tasks for unseen languages including R.
- Score: 1.9799527196428242
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Parameter Efficient Fine-Tuning (PEFT) methods are proposed as an alternative fine-tuning approach for Large Language Models (LLM) to minimize high training costs. While prior research demonstrates the effectiveness of PEFT methods in knowledge transfer using smaller language models, their application to larger LLMs, particularly in low-resource and unseen programming languages such as R, remains under-explored. In this work, we evaluate PEFT methods, LoRA, Compacter, and IA^3 on LLMs for code summarization and generation, with a particular emphasis on knowledge transfer to R as an unseen under-explored target language. Our experiments reveal that LoRA consistently outperforms Compacter and IA^3 in all settings, while Compacter offers significant resource efficiency with minimal performance trade-offs. Additionally, we find that the number of trainable parameters has a greater influence on the functional accuracy of the generated code than PEFT architecture. Our study can direct future research in developing code intelligent tasks for unseen languages including R, as well as the choice of PEFT methods for knowledge transfer, especially when balancing the computational cost and performance.
Related papers
- Enhancing Code Generation for Low-Resource Languages: No Silver Bullet [55.39571645315926]
Large Language Models (LLMs) rely on large and diverse datasets to learn syntax, semantics, and usage patterns of programming languages.
For low-resource languages, the limited availability of such data hampers the models' ability to generalize effectively.
We present an empirical study investigating the effectiveness of several approaches for boosting LLMs' performance on low-resource languages.
arXiv Detail & Related papers (2025-01-31T12:23:28Z) - A Comprehensive Evaluation of Parameter-Efficient Fine-Tuning on Method-Level Code Smell Detection [11.9757082688031]
Existing detection methods, relying on Codes or Machine Learning (ML) and Deep Learning (DL) techniques, often face limitations such as unsatisfactory performance.
This study evaluates state-of-the-art PEFT methods on both small and large Language Models for detecting two types of method-level code smells: Complex Conditional and Complex Method.
Results show that PEFT methods achieve comparable or better performance than full fine-tuning while consuming less GPU memory.
arXiv Detail & Related papers (2024-12-18T12:48:36Z) - KaSA: Knowledge-Aware Singular-Value Adaptation of Large Language Models [11.07333593086842]
Knowledge-aware Singular-value Adaptation (KaSA)
We introduce Knowledge-aware Singular-value Adaptation (KaSA), a PEFT method that leverages singular value decomposition (SVD) with knowledge-aware singular values to dynamically activate knowledge based on its relevance to the task at hand.
Experimental results demonstrate that KaSA consistently outperforms FFT and 14 popular PEFT baselines across 16 benchmarks and 4 synthetic datasets.
arXiv Detail & Related papers (2024-12-08T21:26:22Z) - Parameter-Efficient Fine-Tuning of Large Language Models for Unit Test Generation: An Empirical Study [3.5189934649278922]
Large language models (LLMs) like GitHub Copilot struggle with real-world tasks without fine-tuning.
This paper investigates full fine-tuning and various PEFT methods, including LoRA, (IA)3, and prompt tuning.
Our findings show that PEFT methods can deliver performance comparable to full fine-tuning for unit test generation.
arXiv Detail & Related papers (2024-11-04T09:03:18Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - Enhancing Discriminative Tasks by Guiding the Pre-trained Language Model with Large Language Model's Experience [4.814313782484443]
Large Language Models (LLMs) and pre-trained Language Models (LMs) have achieved impressive success on many software engineering tasks.
We use LLMs to generate domain-specific data, thereby improving the performance of pre-trained LMs on the target tasks.
arXiv Detail & Related papers (2024-08-16T06:37:59Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Verbalized Machine Learning: Revisiting Machine Learning with Language Models [63.10391314749408]
We introduce the framework of verbalized machine learning (VML)
VML constrains the parameter space to be human-interpretable natural language.
We empirically verify the effectiveness of VML, and hope that VML can serve as a stepping stone to stronger interpretability.
arXiv Detail & Related papers (2024-06-06T17:59:56Z) - Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning [35.03338699349037]
We propose a novel in-context learning framework, FeatLLM, which employs Large Language Models as feature engineers.
FeatLLM generates high-quality rules, significantly (10% on average) outperforming alternatives such as TabLLM and STUNT.
arXiv Detail & Related papers (2024-04-15T06:26:08Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Parameter-Efficient Fine-Tuning Methods for Pretrained Language Models:
A Critical Review and Assessment [12.674032145667763]
We present a comprehensive and systematic review of Efficient Fine-Tuning (PEFT) methods for pretrained language models (PLMs)
PEFT offers an effective solution by reducing the number of fine-tuning parameters and memory usage while achieving comparable performance to full fine-tuning.
We conduct experiments using several representative PEFT methods to better understand their effectiveness in parameter efficiency and memory efficiency.
arXiv Detail & Related papers (2023-12-19T13:31:24Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
Large-scale pre-trained language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks.
However, the massive size of these models poses huge challenges for their deployment in real-world applications.
We introduce a novel compression paradigm called Retrieval-based Knowledge Transfer (RetriKT) which effectively transfers the knowledge of LLMs to extremely small-scale models.
arXiv Detail & Related papers (2023-10-24T07:58:20Z) - Exploring Parameter-Efficient Fine-Tuning Techniques for Code Generation
with Large Language Models [12.708117108874083]
Large Language Models (LLMs) generate code snippets given natural language intents in zero-shot, i.e., without the need for specific fine-tuning.
Previous research explored In-Context Learning (ICL) as a strategy to guide the LLM generative process with task-specific prompt examples.
In this paper, we deliver a comprehensive study of.
PEFT techniques for LLMs under the automated code generation scenario.
arXiv Detail & Related papers (2023-08-21T04:31:06Z) - Knowledge Transfer from High-Resource to Low-Resource Programming Languages for Code LLMs [2.9242435458494445]
This paper presents an effective approach for boosting the performance of Code LLMs on low-resource languages using semi-synthetic data.
We apply this approach to generate tens of thousands of validated training items for Julia, Lua, OCaml, R, and Racket.
arXiv Detail & Related papers (2023-08-19T03:19:01Z) - Scaling Sentence Embeddings with Large Language Models [43.19994568210206]
In this work, we propose an in-context learning-based method aimed at improving sentence embeddings performance.
Our approach involves adapting the previous prompt-based representation method for autoregressive models.
By scaling model size, we find scaling to more than tens of billion parameters harms the performance on semantic textual similarity tasks.
arXiv Detail & Related papers (2023-07-31T13:26:03Z) - Okapi: Instruction-tuned Large Language Models in Multiple Languages
with Reinforcement Learning from Human Feedback [61.83548032416181]
We present Okapi, the first system with instruction-tuned LLMs based on RLHF for multiple languages.
Okapi introduces instruction and response-ranked data in 26 diverse languages to facilitate the experiments and development of future multilingual LLM research.
arXiv Detail & Related papers (2023-07-29T18:01:46Z) - Knowledge-Augmented Reasoning Distillation for Small Language Models in
Knowledge-Intensive Tasks [90.11273439036455]
Large Language Models (LLMs) have shown promising performance in knowledge-intensive reasoning tasks.
We propose Knowledge-Augmented Reasoning Distillation (KARD), a novel method that fine-tunes small LMs to generate rationales from LLMs with augmented knowledge retrieved from an external knowledge base.
We empirically show that KARD significantly improves the performance of small T5 and GPT models on the challenging knowledge-intensive reasoning datasets.
arXiv Detail & Related papers (2023-05-28T13:00:00Z) - Self-Checker: Plug-and-Play Modules for Fact-Checking with Large Language Models [75.75038268227554]
Self-Checker is a framework comprising a set of plug-and-play modules that facilitate fact-checking.
This framework provides a fast and efficient way to construct fact-checking systems in low-resource environments.
arXiv Detail & Related papers (2023-05-24T01:46:07Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.