論文の概要: Copyright related risks in the creation and use of ML/AI systems
- arxiv url: http://arxiv.org/abs/2405.01560v1
- Date: Wed, 27 Mar 2024 02:48:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 11:09:59.122338
- Title: Copyright related risks in the creation and use of ML/AI systems
- Title(参考訳): ML/AIシステムの作成と利用における著作権関連リスク
- Authors: Daniel M. German,
- Abstract要約: 本稿では機械学習(ML)と人工知能(AI)システム(Large Language Models --LLMsを含む)がもたらす著作権関連リスクについて要約する。
これらのリスクは、トレーニングデータの著作権の所有者、ML/AIシステムのユーザ、トレーニングされたモデルの作者、AIシステムのオペレータなど、さまざまな利害関係者に影響を与える。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper summarizes the current copyright related risks that Machine Learning (ML) and Artificial Intelligence (AI) systems (including Large Language Models --LLMs) incur. These risks affect different stakeholders: owners of the copyright of the training data, the users of ML/AI systems, the creators of trained models, and the operators of AI systems. This paper also provides an overview of ongoing legal cases in the United States related to these risks.
- Abstract(参考訳): 本稿では機械学習(ML)と人工知能(AI)システム(Large Language Models --LLMsを含む)がもたらす著作権関連リスクについて要約する。
これらのリスクは、トレーニングデータの著作権の所有者、ML/AIシステムのユーザ、トレーニングされたモデルの作者、AIシステムのオペレータなど、さまざまな利害関係者に影響を与える。
本稿は、これらのリスクに関する米国における現在進行中の訴訟についても概説する。
関連論文リスト
- Fully Autonomous AI Agents Should Not be Developed [58.88624302082713]
本稿では,完全自律型AIエージェントを開発すべきではないと主張している。
この立場を支持するために、我々は、従来の科学文献と現在の製品マーケティングから、異なるAIエージェントレベルを規定するために構築する。
分析の結果,システムの自律性によって人へのリスクが増大することが明らかとなった。
論文 参考訳(メタデータ) (2025-02-04T19:00:06Z) - Risk Sources and Risk Management Measures in Support of Standards for General-Purpose AI Systems [2.3266896180922187]
我々は、汎用AIシステムのためのリスクソースとリスク管理対策の広範なカタログをコンパイルする。
この作業には、モデル開発、トレーニング、デプロイメントステージにわたる技術的、運用的、社会的リスクの特定が含まれる。
このカタログは、AIガバナンスと標準における利害関係者による直接的な使用を容易にするために、パブリックドメインライセンス下でリリースされている。
論文 参考訳(メタデータ) (2024-10-30T21:32:56Z) - Risks and NLP Design: A Case Study on Procedural Document QA [52.557503571760215]
より具体的なアプリケーションやユーザに対して分析を専門化すれば,ユーザに対するリスクや害の明確な評価が可能になる,と我々は主張する。
リスク指向のエラー分析を行い、リスクの低減とパフォーマンスの向上を図り、将来のシステムの設計を通知する。
論文 参考訳(メタデータ) (2024-08-16T17:23:43Z) - Evaluating Copyright Takedown Methods for Language Models [100.38129820325497]
言語モデル(LM)は、潜在的に著作権のある資料を含む様々なデータに対する広範な訓練からその能力を引き出す。
本稿では,LMの著作権削除の可能性と副作用を初めて評価する。
システムプロンプトの追加、デコード時間フィルタリングの介入、未学習アプローチなど、いくつかの戦略を検討する。
論文 参考訳(メタデータ) (2024-06-26T18:09:46Z) - AI Cards: Towards an Applied Framework for Machine-Readable AI and Risk Documentation Inspired by the EU AI Act [2.1897070577406734]
その重要性にもかかわらず、AI法に沿ったAIとリスクドキュメントの作成を支援するための標準やガイドラインが欠如している。
提案するAIカードは,AIシステムの意図した使用を表現するための,新しい総合的なフレームワークである。
論文 参考訳(メタデータ) (2024-06-26T09:51:49Z) - AI Risk Categorization Decoded (AIR 2024): From Government Regulations to Corporate Policies [88.32153122712478]
我々は4階層の分類に分類された314のユニークなリスクカテゴリを特定した。
最高レベルでは、この分類はシステム・アンド・オペレーショナル・リスク、コンテンツ・セーフティ・リスク、社会的なリスク、法と権利のリスクを含む。
我々は、セクター間の情報共有と、生成型AIモデルとシステムのリスク軽減におけるベストプラクティスの推進を通じて、AIの安全性を向上することを目指している。
論文 参考訳(メタデータ) (2024-06-25T18:13:05Z) - The WMDP Benchmark: Measuring and Reducing Malicious Use With Unlearning [87.1610740406279]
ホワイトハウス人工知能に関する大統領令は、生物、サイバー、化学兵器の開発において悪意あるアクターに力を与える大きな言語モデル(LLM)のリスクを強調している。
現在の評価は非公開であり、リスク軽減のさらなる研究を妨げている。
Weapons of Mass Destruction Proxyベンチマークを公開しています。
論文 参考訳(メタデータ) (2024-03-05T18:59:35Z) - A Cybersecurity Risk Analysis Framework for Systems with Artificial
Intelligence Components [0.0]
欧州連合人工知能法、NIST人工知能リスク管理フレームワーク、および関連する規範の導入は、人工知能コンポーネントを持つシステムを評価するために、新しいリスク分析アプローチをよりよく理解し実装することを要求する。
本稿では,このようなシステムの評価を支援するサイバーセキュリティリスク分析フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-03T09:06:39Z) - A Framework for Exploring the Consequences of AI-Mediated Enterprise Knowledge Access and Identifying Risks to Workers [3.4568218861862556]
本稿では、AIを利用した企業知識アクセスシステムから労働者のリスクを特定するためのConsequence-Mechanism-Riskフレームワークを提案する。
我々は、労働者に対するリスクを詳述した幅広い文献を執筆し、労働者の価値、力、幸福に対するリスクを分類した。
今後の作業は、この枠組みを他の技術システムに適用し、労働者や他のグループの保護を促進する可能性がある。
論文 参考訳(メタデータ) (2023-12-08T17:05:40Z) - The Risks of Machine Learning Systems [11.105884571838818]
システム全体のリスクは、その直接的および間接的な影響に影響される。
MLのリスク/インパクト評価のための既存のフレームワークは、しばしばリスクの抽象的な概念に対処する。
1次リスクはMLシステムの側面に起因するが、2次リスクは1次リスクの結果に起因する。
論文 参考訳(メタデータ) (2022-04-21T02:42:10Z) - Trustworthy AI Inference Systems: An Industry Research View [58.000323504158054]
我々は、信頼できるAI推論システムの設計、展開、運用にアプローチするための業界調査ビューを提供する。
信頼された実行環境を用いたAIシステムの機会と課題を強調します。
我々は,産業,アカデミック,政府研究者のグローバルな集団的注意を必要とする,さらなる発展の分野を概説する。
論文 参考訳(メタデータ) (2020-08-10T23:05:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。