論文の概要: Software Mention Recognition with a Three-Stage Framework Based on BERTology Models at SOMD 2024
- arxiv url: http://arxiv.org/abs/2405.01575v1
- Date: Tue, 23 Apr 2024 17:06:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-12 16:10:01.574876
- Title: Software Mention Recognition with a Three-Stage Framework Based on BERTology Models at SOMD 2024
- Title(参考訳): SOMD 2024におけるBERTologyモデルに基づく3段階フレームワークによるソフトウェアメンション認識
- Authors: Thuy Nguyen Thi, Anh Nguyen Viet, Thin Dang Van, Ngan Nguyen Luu Thuy,
- Abstract要約: 本稿では,Scholarly Publications shared-taskにおけるSoftware Mention DetectionにおけるサブタスクIのシステムについて述べる。
ベストパフォーマンスシステムは3段階のフレームワークを通じて名前付きエンティティ認識問題に対処する。
XLM-Rベースのモデルに基づくフレームワークは、重み付けされたF1スコア67.80%を実現し、ソフトウェアメンション認識タスクのサブタスクIの3位にチームに提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes our systems for the sub-task I in the Software Mention Detection in Scholarly Publications shared-task. We propose three approaches leveraging different pre-trained language models (BERT, SciBERT, and XLM-R) to tackle this challenge. Our bestperforming system addresses the named entity recognition (NER) problem through a three-stage framework. (1) Entity Sentence Classification - classifies sentences containing potential software mentions; (2) Entity Extraction - detects mentions within classified sentences; (3) Entity Type Classification - categorizes detected mentions into specific software types. Experiments on the official dataset demonstrate that our three-stage framework achieves competitive performance, surpassing both other participating teams and our alternative approaches. As a result, our framework based on the XLM-R-based model achieves a weighted F1-score of 67.80%, delivering our team the 3rd rank in Sub-task I for the Software Mention Recognition task.
- Abstract(参考訳): 本稿では,Scholarly Publications shared-taskにおけるSoftware Mention DetectionにおけるサブタスクIのシステムについて述べる。
本稿では,様々な事前学習型言語モデル(BERT, SciBERT, XLM-R)を活用する3つのアプローチを提案する。
我々のベストパフォーマンスシステムは3段階のフレームワークを通じて名前付きエンティティ認識(NER)問題に対処する。
1) エンティティ型分類 - 潜在的なソフトウェア参照を含む文を分類する; (2) エンティティ抽出 - 分類された文内での参照を検出する; (3) エンティティ型分類 - 検出された参照を特定のソフトウェアタイプに分類する。
公式データセットの実験では、私たちの3つのステージフレームワークが、他の参加チームと代替アプローチを越えながら、競争力のあるパフォーマンスを実現しています。
その結果,XLM-Rモデルに基づくフレームワークは67.80%の重み付きF1スコアを実現し,ソフトウェアメンション認識タスクのサブタスクIで3位となった。
関連論文リスト
- Unified Speech Recognition: A Single Model for Auditory, Visual, and Audiovisual Inputs [73.74375912785689]
本稿では,音声認識システムのための統合学習戦略を提案する。
3つのタスクの1つのモデルをトレーニングすることで、VSRとAVSRの性能が向上することを示す。
また,非ラベル標本をより効果的に活用するために,強欲な擬似ラベリング手法を導入する。
論文 参考訳(メタデータ) (2024-11-04T16:46:53Z) - AISPACE at SemEval-2024 task 8: A Class-balanced Soft-voting System for Detecting Multi-generator Machine-generated Text [0.0]
SemEval-2024 Task 8は、人書きテキストと機械生成テキストを検出するための課題を提供する。
本稿では,主にSubtask Bを扱うシステムを提案する。
これは、与えられた全文が人間によって書かれたか、あるいは、実際にはマルチクラスのテキスト分類タスクである特定のLarge Language Model (LLM)によって生成されるかを検出することを目的としている。
論文 参考訳(メタデータ) (2024-04-01T06:25:47Z) - In-Context Learning for Few-Shot Nested Named Entity Recognition [53.55310639969833]
数発のネストネストNERの設定に有効で革新的なICLフレームワークを導入する。
我々は、新しい実演選択機構であるEnDe retrieverを考案し、ICLプロンプトを改善する。
EnDe検索では,意味的類似性,境界類似性,ラベル類似性という3種類の表現学習を行うために,コントラスト学習を用いる。
論文 参考訳(メタデータ) (2024-02-02T06:57:53Z) - IntenDD: A Unified Contrastive Learning Approach for Intent Detection
and Discovery [12.905097743551774]
バックボーンを符号化する共有発話を利用した統一手法であるIntenDDを提案する。
IntenDDは完全に教師なしのコントラスト学習戦略を用いて表現学習を行う。
当社のアプローチは,3つのタスクのすべてにおいて,競争上のベースラインを一貫して上回ります。
論文 参考訳(メタデータ) (2023-10-25T16:50:24Z) - IXA/Cogcomp at SemEval-2023 Task 2: Context-enriched Multilingual Named
Entity Recognition using Knowledge Bases [53.054598423181844]
3つのステップからなる新しいNERカスケードアプローチを提案する。
我々は、細粒度および新興物質を正確に分類する上で、外部知識基盤の重要性を実証的に示す。
本システムは,低リソース言語設定においても,マルチコネラ2共有タスクにおいて頑健な性能を示す。
論文 参考訳(メタデータ) (2023-04-20T20:30:34Z) - Multi-task Transformer with Relation-attention and Type-attention for
Named Entity Recognition [35.44123819012004]
名前付きエンティティ認識(NER)は自然言語処理において重要な研究課題である。
本稿では,エンティティ境界検出タスクを名前付きエンティティ認識タスクに組み込むマルチタスク変換器を提案する。
論文 参考訳(メタデータ) (2023-03-20T05:11:22Z) - Task formulation for Extracting Social Determinants of Health from
Clinical Narratives [0.0]
2022 n2c2 NLP Challengeは、臨床物語における健康の社会的決定要因の同定を提起した。
本稿では,この課題のために開発した3つのシステムについて述べるとともに,それぞれのシステムで使用される特徴的タスクの定式化について論じる。
論文 参考訳(メタデータ) (2023-01-26T20:00:54Z) - Hybrid Rule-Neural Coreference Resolution System based on Actor-Critic
Learning [53.73316523766183]
コアレゾリューションシステムは2つの主要なタスクに取り組む必要がある。
ひとつのタスクは、潜在的な言及のすべてを検出することであり、もう1つは、可能な言及ごとに前者のリンクを学習することである。
本稿では,アクター・クリティカル・ラーニングに基づく複合ルール・ニューラル・コア参照解決システムを提案する。
論文 参考訳(メタデータ) (2022-12-20T08:55:47Z) - UniTE: Unified Translation Evaluation [63.58868113074476]
UniTEは3つの評価タスクをすべて処理する能力に携わる最初の統合フレームワークである。
We testify our framework on WMT 2019 Metrics and WMT 2020 Quality Estimation benchmarks。
論文 参考訳(メタデータ) (2022-04-28T08:35:26Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。