Effective Delegation and Leadership in Software Management
- URL: http://arxiv.org/abs/2405.01612v1
- Date: Thu, 2 May 2024 14:16:05 GMT
- Title: Effective Delegation and Leadership in Software Management
- Authors: Star Dawood Mirkhan, Skala Kamaran Omer, Hussein Mohammed Ali, Mahmood Yashar Hamza, Tarik Ahmed Rashid, Poornima Nedunchezhian,
- Abstract summary: This study examined the relationship between delegation and leadership in software management and the impact of these factors on project outcomes.
Results showed that effective delegation and transformational leadership styles can improve workflow, enhance team motivation and productivity, and lead to successful software development projects.
- Score: 0.49478969093606673
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Delegation and leadership are critical components of software management, as they play a crucial role in determining the success of the software development process. This study examined the relationship between delegation and leadership in software management and the impact of these factors on project outcomes. Results showed that effective delegation and transformational leadership styles can improve workflow, enhance team motivation and productivity, and ultimately lead to successful software development projects. The findings of this study have important implications for software management practices, as they suggest that organizations and software managers should prioritize the development of effective delegation and leadership practices to ensure the success of their software development initiatives. Further research is needed to explore the complex interplay between delegation and leadership in software management and to identify best practices for improving these processes.
Related papers
- Diversity and Inclusion in AI for Recruitment: Lessons from Industry Workshop [44.807030880787345]
This study investigates the practical application of D&I guidelines in AI-driven online job-seeking systems.
We conducted a co-design workshop with a large multinational recruitment company.
The results suggest developing tailored D&I guidelines and ongoing support to ensure the effective adoption of inclusive AI practices.
arXiv Detail & Related papers (2024-11-09T04:45:47Z) - The Role of DevOps in Enhancing Enterprise Software Delivery Success through R&D Efficiency and Source Code Management [0.4532517021515834]
This study focuses on enhancing R&D efficiency and source code management (SCM) for software delivery success.
Using a qualitative methodology, data were collected from case studies of large-scale enterprises implementing DevOps.
arXiv Detail & Related papers (2024-11-04T16:01:43Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
This research proposal aims to explore innovative solutions by focusing on the deployment of agents powered by Large Language Models (LLMs)
The iterative nature of agents, which allows for continuous learning and adaptation, can help surpass common challenges in code generation.
We aim to use the iterative feedback in these systems to further fine-tune the LLMs underlying the agents, becoming better aligned to the task of automated software improvement.
arXiv Detail & Related papers (2024-06-24T15:45:22Z) - Utilizing Deep Learning to Optimize Software Development Processes [12.170648326334536]
This study explores the application of deep learning technologies in software development processes.
Experiments show significant improvements in the experimental group, validating the effectiveness of deep learning technologies.
arXiv Detail & Related papers (2024-04-21T12:06:05Z) - Charting a Path to Efficient Onboarding: The Role of Software
Visualization [49.1574468325115]
The present study aims to explore the familiarity of managers, leaders, and developers with software visualization tools.
This approach incorporated quantitative and qualitative analyses of data collected from practitioners using questionnaires and semi-structured interviews.
arXiv Detail & Related papers (2024-01-17T21:30:45Z) - Experiential Co-Learning of Software-Developing Agents [83.34027623428096]
Large language models (LLMs) have brought significant changes to various domains, especially in software development.
We introduce Experiential Co-Learning, a novel LLM-agent learning framework.
Experiments demonstrate that the framework enables agents to tackle unseen software-developing tasks more effectively.
arXiv Detail & Related papers (2023-12-28T13:50:42Z) - Devops And Agile Methods Integrated Software Configuration Management
Experience [0.0]
The aim of this study is to examine the differences and benefits that innovative methods bring to the software configuration management field when compared to traditional methods.
Improvements are seen in the build and deployment time, automated report generation, more accurate and fault-free version management.
arXiv Detail & Related papers (2023-06-24T13:40:27Z) - Nemo: Guiding and Contextualizing Weak Supervision for Interactive Data
Programming [77.38174112525168]
We present Nemo, an end-to-end interactive Supervision system that improves overall productivity of WS learning pipeline by an average 20% (and up to 47% in one task) compared to the prevailing WS supervision approach.
arXiv Detail & Related papers (2022-03-02T19:57:32Z) - Empowered and Embedded: Ethics and Agile Processes [60.63670249088117]
We argue that ethical considerations need to be embedded into the (agile) software development process.
We put emphasis on the possibility to implement ethical deliberations in already existing and well established agile software development processes.
arXiv Detail & Related papers (2021-07-15T11:14:03Z) - Where Responsible AI meets Reality: Practitioner Perspectives on
Enablers for shifting Organizational Practices [3.119859292303396]
This paper examines and seeks to offer a framework for analyzing how organizational culture and structure impact the effectiveness of responsible AI initiatives in practice.
We present the results of semi-structured qualitative interviews with practitioners working in industry, investigating common challenges, ethical tensions, and effective enablers for responsible AI initiatives.
arXiv Detail & Related papers (2020-06-22T15:57:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.