論文の概要: MMIST-ccRCC: A Real World Medical Dataset for the Development of Multi-Modal Systems
- arxiv url: http://arxiv.org/abs/2405.01658v1
- Date: Thu, 2 May 2024 18:29:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 14:54:33.205518
- Title: MMIST-ccRCC: A Real World Medical Dataset for the Development of Multi-Modal Systems
- Title(参考訳): MMIST-ccRCC:マルチモーダルシステム開発のための実世界医療データセット
- Authors: Tiago Mota, M. Rita Verdelho, Alceu Bissoto, Carlos Santiago, Catarina Barata,
- Abstract要約: 本稿では,MMIST-CCRCCと呼ばれる実世界のマルチモーダルデータセットを紹介する。
このデータセットは、クリア細胞腎細胞癌(ccRCC)618例の2つの放射線学的モダリティ(CTとMRI)、病理組織学、ゲノム学、臨床データからなる。
このような深刻な欠落率であっても、モダリティの融合は生存予測の改善につながることを示す。
- 参考スコア(独自算出の注目度): 12.914295902429
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The acquisition of different data modalities can enhance our knowledge and understanding of various diseases, paving the way for a more personalized healthcare. Thus, medicine is progressively moving towards the generation of massive amounts of multi-modal data (\emph{e.g,} molecular, radiology, and histopathology). While this may seem like an ideal environment to capitalize data-centric machine learning approaches, most methods still focus on exploring a single or a pair of modalities due to a variety of reasons: i) lack of ready to use curated datasets; ii) difficulty in identifying the best multi-modal fusion strategy; and iii) missing modalities across patients. In this paper we introduce a real world multi-modal dataset called MMIST-CCRCC that comprises 2 radiology modalities (CT and MRI), histopathology, genomics, and clinical data from 618 patients with clear cell renal cell carcinoma (ccRCC). We provide single and multi-modal (early and late fusion) benchmarks in the task of 12-month survival prediction in the challenging scenario of one or more missing modalities for each patient, with missing rates that range from 26$\%$ for genomics data to more than 90$\%$ for MRI. We show that even with such severe missing rates the fusion of modalities leads to improvements in the survival forecasting. Additionally, incorporating a strategy to generate the latent representations of the missing modalities given the available ones further improves the performance, highlighting a potential complementarity across modalities. Our dataset and code are available here: https://multi-modal-ist.github.io/datasets/ccRCC
- Abstract(参考訳): さまざまなデータモダリティの獲得は、さまざまな病気の知識と理解を高め、よりパーソナライズされたヘルスケアへの道を開くことができる。
したがって、医療は、大量のマルチモーダルデータ(分子、放射線学、病理学)の生成に向かって徐々に進んでいる。
これは、データ中心の機械学習アプローチを収益化するのに理想的な環境のように思えるかもしれないが、ほとんどのメソッドは、さまざまな理由から、シングルまたはペアのモダリティを探索することに重点を置いている。
一 キュレートされたデータセットを使用する準備ができていないこと。
二 最良のマルチモーダル核融合戦略を特定することの難しさ及び
三 患者間のモダリティの欠如
本報告では,鮮明な細胞腎細胞癌(ccRCC)618例の2つの放射線学的モダリティ(CTとMRI),病理組織学,ゲノム学,臨床データからなるMMIST-CCRCCと呼ばれる実世界のマルチモーダルデータセットについて紹介する。
我々は、各患者の1つ以上の欠失モダリティの挑戦シナリオにおいて、12ヶ月の生存予測のタスクにおいて、単一およびマルチモーダル(早期および後期融合)ベンチマークを提供し、その欠失率は、ゲノムデータに対して26$\%$から90$\%$までの範囲である。
このような深刻な欠落率であっても、モダリティの融合は生存予測の改善につながることを示す。
さらに、利用可能なモダリティが不足しているモダリティの潜在表現を生成する戦略を取り入れることで、パフォーマンスがさらに向上し、モダリティ間の潜在的な相補性が強調される。
私たちのデータセットとコードはこちらで利用可能です。
関連論文リスト
- Personalized 2D Binary Patient Codes of Tissue Images and Immunogenomic Data Through Multimodal Self-Supervised Fusion [0.9374652839580183]
MarbliXは、病理組織像と免疫ゲノムシークエンシングデータを統合し、それらを簡潔なバイナリー患者コードにカプセル化する革新的なフレームワークである。
実験の結果は、医療専門家に深い洞察を与えるMarbliXの可能性を示している。
論文 参考訳(メタデータ) (2024-09-19T22:49:27Z) - Embedding-based Multimodal Learning on Pan-Squamous Cell Carcinomas for Improved Survival Outcomes [0.0]
PARADIGMは、マルチモーダルで異質なデータセットから学習し、臨床結果の予測を改善するフレームワークである。
膵扁平上皮癌においてGNNを訓練し,Moffitt Cancer Center肺SCCデータに対するアプローチを検証した。
我々のソリューションは、患者の状況を包括的に理解することを目的としており、異種データ統合と最大データビューの収束の利点についての洞察を提供する。
論文 参考訳(メタデータ) (2024-06-11T22:19:14Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
本稿では,フレキシブルなマルチモーダル融合アーキテクチャであるHybrid Early-fusion Attention Learning Network (HEALNet)を提案する。
The Cancer Genome Atlas (TCGA) の4つのがんデータセットにおける全スライド画像と多モードデータを用いたマルチモーダルサバイバル解析を行った。
HEALNetは、他のエンドツーエンドの訓練された融合モデルと比較して最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-11-15T17:06:26Z) - Building Flexible, Scalable, and Machine Learning-ready Multimodal
Oncology Datasets [17.774341783844026]
本研究は、オンコロジーデータシステム(MINDS)のマルチモーダル統合を提案する。
MINDSはフレキシブルでスケーラブルで費用対効果の高いメタデータフレームワークで、公開ソースから異なるデータを効率的に分離する。
MINDSは、マルチモーダルデータを調和させることで、より分析能力の高い研究者を力づけることを目指している。
論文 参考訳(メタデータ) (2023-09-30T15:44:39Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
6大陸にわたる71の医療機関のデータを含む,これまでで最大のフェデレーテッドML研究の結果を報告する。
グリオ芽腫の稀な疾患に対する腫瘍境界自動検出装置を作製した。
当科では, 外科的に標的とした腫瘍の悪性度を高めるために, 33%の改善率を示し, 腫瘍全体に対する23%の改善率を示した。
論文 参考訳(メタデータ) (2022-04-22T17:27:00Z) - Deep Orthogonal Fusion: Multimodal Prognostic Biomarker Discovery
Integrating Radiology, Pathology, Genomic, and Clinical Data [0.32622301272834525]
グリオーマ患者の生存率 (OS) を, 深層直交核融合モデルを用いて予測した。
このモデルは、MRI検査、生検に基づくモダリティ、臨床変数から得た情報を総合的なマルチモーダルリスクスコアに組み合わせることを学ぶ。
グリオーマ患者を臨床的サブセット内でOSにより明らかに層分けし、予後不良な臨床グレーディングと分子サブタイプにさらに粒度を付加する。
論文 参考訳(メタデータ) (2021-07-01T17:59:01Z) - Brain Image Synthesis with Unsupervised Multivariate Canonical
CSC$\ell_4$Net [122.8907826672382]
我々は,新しいCSC$ell_4$Netを用いて,イントレとイントラモーダルの両方にまたがる専用特徴を学習することを提案する。
論文 参考訳(メタデータ) (2021-03-22T05:19:40Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
生存時間(OS)の早期かつ正確な予測は、脳腫瘍患者に対するより良い治療計画を得るのに役立つ。
既存の予測手法は、磁気共鳴(MR)ボリュームの局所的な病変領域における放射能特性に依存している。
我々は,マルチモーダルマルチチャネルネットワーク(M2Net)のエンドツーエンドOS時間予測モデルを提案する。
論文 参考訳(メタデータ) (2020-06-01T05:21:37Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
画像モダリティの欠如に頑健な新しいマルチモーダルセグメンテーションフレームワークを提案する。
我々のネットワークは、入力モードをモダリティ固有の外観コードに分解するために、特徴不整合を用いる。
我々は,BRATSチャレンジデータセットを用いて,重要なマルチモーダル脳腫瘍セグメンテーション課題に対する本手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-02-22T14:32:04Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
本稿では,ロバスト表現を学習し,前立腺のセグメンテーションを改善するための新しいマルチサイトネットワーク(MS-Net)を提案する。
当社のMS-Netは,すべてのデータセットのパフォーマンスを一貫して改善し,マルチサイト学習における最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-02-09T14:11:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。