When a Relation Tells More Than a Concept: Exploring and Evaluating Classifier Decisions with CoReX
- URL: http://arxiv.org/abs/2405.01661v1
- Date: Thu, 2 May 2024 18:31:47 GMT
- Title: When a Relation Tells More Than a Concept: Exploring and Evaluating Classifier Decisions with CoReX
- Authors: Bettina Finzel, Patrick Hilme, Johannes Rabold, Ute Schmid,
- Abstract summary: This work presents a novel method to explain and evaluate CNN models, which uses a concept- and relation-based explainer (CoReX)
It explains the predictive behavior of a model on a set of images by masking (ir-)relevant concepts from the decision-making process and by constraining relations in a learned interpretable surrogate model.
- Score: 1.8213611231184352
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explanations for Convolutional Neural Networks (CNNs) based on relevance of input pixels might be too unspecific to evaluate which and how input features impact model decisions. Especially in complex real-world domains like biomedicine, the presence of specific concepts (e.g., a certain type of cell) and of relations between concepts (e.g., one cell type is next to another) might be discriminative between classes (e.g., different types of tissue). Pixel relevance is not expressive enough to convey this type of information. In consequence, model evaluation is limited and relevant aspects present in the data and influencing the model decisions might be overlooked. This work presents a novel method to explain and evaluate CNN models, which uses a concept- and relation-based explainer (CoReX). It explains the predictive behavior of a model on a set of images by masking (ir-)relevant concepts from the decision-making process and by constraining relations in a learned interpretable surrogate model. We test our approach with several image data sets and CNN architectures. Results show that CoReX explanations are faithful to the CNN model in terms of predictive outcomes. We further demonstrate that CoReX is a suitable tool for evaluating CNNs supporting identification and re-classification of incorrect or ambiguous classifications.
Related papers
- COMIX: Compositional Explanations using Prototypes [46.15031477955461]
We propose a method to align machine representations with human understanding.
The proposed method, named COMIX, classifies an image by decomposing it into regions based on learned concepts.
We show that our method provides fidelity of explanations and shows that the efficiency is competitive with other inherently interpretable architectures.
arXiv Detail & Related papers (2025-01-10T15:40:31Z) - On Discprecncies between Perturbation Evaluations of Graph Neural
Network Attributions [49.8110352174327]
We assess attribution methods from a perspective not previously explored in the graph domain: retraining.
The core idea is to retrain the network on important (or not important) relationships as identified by the attributions.
We run our analysis on four state-of-the-art GNN attribution methods and five synthetic and real-world graph classification datasets.
arXiv Detail & Related papers (2024-01-01T02:03:35Z) - Probing Graph Representations [77.7361299039905]
We use a probing framework to quantify the amount of meaningful information captured in graph representations.
Our findings on molecular datasets show the potential of probing for understanding the inductive biases of graph-based models.
We advocate for probing as a useful diagnostic tool for evaluating graph-based models.
arXiv Detail & Related papers (2023-03-07T14:58:18Z) - Concept-based Explanations using Non-negative Concept Activation Vectors
and Decision Tree for CNN Models [4.452019519213712]
This paper evaluates whether training a decision tree based on concepts extracted from a concept-based explainer can increase interpretability for Convolutional Neural Networks (CNNs) models.
arXiv Detail & Related papers (2022-11-19T21:42:55Z) - Neural Causal Models for Counterfactual Identification and Estimation [62.30444687707919]
We study the evaluation of counterfactual statements through neural models.
First, we show that neural causal models (NCMs) are expressive enough.
Second, we develop an algorithm for simultaneously identifying and estimating counterfactual distributions.
arXiv Detail & Related papers (2022-09-30T18:29:09Z) - CONVIQT: Contrastive Video Quality Estimator [63.749184706461826]
Perceptual video quality assessment (VQA) is an integral component of many streaming and video sharing platforms.
Here we consider the problem of learning perceptually relevant video quality representations in a self-supervised manner.
Our results indicate that compelling representations with perceptual bearing can be obtained using self-supervised learning.
arXiv Detail & Related papers (2022-06-29T15:22:01Z) - ADVISE: ADaptive Feature Relevance and VISual Explanations for
Convolutional Neural Networks [0.745554610293091]
We introduce ADVISE, a new explainability method that quantifies and leverages the relevance of each unit of the feature map to provide better visual explanations.
We extensively evaluate our idea in the image classification task using AlexNet, VGG16, ResNet50, and Xception pretrained on ImageNet.
Our experiments further show that ADVISE fulfils the sensitivity and implementation independence axioms while passing the sanity checks.
arXiv Detail & Related papers (2022-03-02T18:16:57Z) - CX-ToM: Counterfactual Explanations with Theory-of-Mind for Enhancing
Human Trust in Image Recognition Models [84.32751938563426]
We propose a new explainable AI (XAI) framework for explaining decisions made by a deep convolutional neural network (CNN)
In contrast to the current methods in XAI that generate explanations as a single shot response, we pose explanation as an iterative communication process.
Our framework generates sequence of explanations in a dialog by mediating the differences between the minds of machine and human user.
arXiv Detail & Related papers (2021-09-03T09:46:20Z) - Finding Representative Interpretations on Convolutional Neural Networks [43.25913447473829]
We develop a novel unsupervised approach to produce a highly representative interpretation for a large number of similar images.
We formulate the problem of finding representative interpretations as a co-clustering problem, and convert it into a submodular cost submodular cover problem.
Our experiments demonstrate the excellent performance of our method.
arXiv Detail & Related papers (2021-08-13T20:17:30Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Explain by Evidence: An Explainable Memory-based Neural Network for
Question Answering [41.73026155036886]
This paper proposes an explainable, evidence-based memory network architecture.
It learns to summarize the dataset and extract supporting evidences to make its decision.
Our model achieves state-of-the-art performance on two popular question answering datasets.
arXiv Detail & Related papers (2020-11-05T21:18:21Z) - Invertible Concept-based Explanations for CNN Models with Non-negative
Concept Activation Vectors [24.581839689833572]
Convolutional neural network (CNN) models for computer vision are powerful but lack explainability in their most basic form.
Recent work on explanations through feature importance of approximate linear models has moved from input-level features to features from mid-layer feature maps in the form of concept activation vectors (CAVs)
In this work, we rethink the ACE algorithm of Ghorbani etal., proposing an alternative invertible concept-based explanation (ICE) framework to overcome its shortcomings.
arXiv Detail & Related papers (2020-06-27T17:57:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.