論文の概要: When a Relation Tells More Than a Concept: Exploring and Evaluating Classifier Decisions with CoReX
- arxiv url: http://arxiv.org/abs/2405.01661v2
- Date: Fri, 2 Aug 2024 21:55:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 22:45:03.968861
- Title: When a Relation Tells More Than a Concept: Exploring and Evaluating Classifier Decisions with CoReX
- Title(参考訳): 概念以上の意味を持つ関係:CoReXによる分類決定の探索と評価
- Authors: Bettina Finzel, Patrick Hilme, Johannes Rabold, Ute Schmid,
- Abstract要約: 入力画素の関連性に基づく畳み込みニューラルネットワーク(CNN)の解説は、どの入力特徴がモデル決定にどのように影響するかを評価するには、あまり特異ではないかもしれない。
本研究では,概念と関係に基づく説明器(CoReX)を用いたCNNモデルの説明と評価を行う新しい手法を提案する。
- 参考スコア(独自算出の注目度): 1.8213611231184352
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explanations for Convolutional Neural Networks (CNNs) based on relevance of input pixels might be too unspecific to evaluate which and how input features impact model decisions. Especially in complex real-world domains like biology, the presence of specific concepts and of relations between concepts might be discriminating between classes. Pixel relevance is not expressive enough to convey this type of information. In consequence, model evaluation is limited and relevant aspects present in the data and influencing the model decisions might be overlooked. This work presents a novel method to explain and evaluate CNN models, which uses a concept- and relation-based explainer (CoReX). It explains the predictive behavior of a model on a set of images by masking (ir-)relevant concepts from the decision-making process and by constraining relations in a learned interpretable surrogate model. We test our approach with several image data sets and CNN architectures. Results show that CoReX explanations are faithful to the CNN model in terms of predictive outcomes. We further demonstrate through a human evaluation that CoReX is a suitable tool for generating combined explanations that help assessing the classification quality of CNNs. We further show that CoReX supports the identification and re-classification of incorrect or ambiguous classifications.
- Abstract(参考訳): 入力画素の関連性に基づく畳み込みニューラルネットワーク(CNN)の解説は、どの入力特徴がモデル決定にどのように影響するかを評価するには、あまり特異ではないかもしれない。
特に生物学のような複雑な現実世界の領域では、特定の概念の存在と概念間の関係はクラス間で区別される。
ピクセルの関連性はこの種の情報を伝えるのに十分ではない。
結果として、モデル評価は制限され、データに関連性があり、モデル決定に影響を与えることは見過ごされかねない。
本研究では,概念と関係に基づく説明器(CoReX)を用いて,CNNモデルの説明と評価を行う新しい手法を提案する。
決定過程から関連する概念をマスキングし,学習した解釈可能なサロゲートモデルにおける関係を拘束することにより,画像の集合上でのモデルの予測挙動を説明する。
いくつかの画像データセットとCNNアーキテクチャでアプローチをテストする。
結果から,CNNモデルに対するCReXの説明は予測結果に忠実であることが示唆された。
さらに,人間による評価を通じて,CNNの分類品質を評価する上で,CReXは複合的な説明を生成するのに適したツールであることを示す。
さらに,CoReXが不正確な分類や曖昧な分類の識別と再分類を支援することを示す。
関連論文リスト
- On Discprecncies between Perturbation Evaluations of Graph Neural
Network Attributions [49.8110352174327]
我々は、グラフ領域で以前に検討されていない視点から帰属法を評価する:再学習。
中心となる考え方は、属性によって識別される重要な(あるいは重要でない)関係でネットワークを再訓練することである。
我々は4つの最先端GNN属性法と5つの合成および実世界のグラフ分類データセットについて分析を行った。
論文 参考訳(メタデータ) (2024-01-01T02:03:35Z) - Probing Graph Representations [77.7361299039905]
グラフ表現でキャプチャされた意味のある情報の量を定量化するために、探索フレームワークを使用します。
本研究は, グラフモデルにおける帰納的バイアスを理解するための探索の可能性を示すものである。
グラフベースモデルを評価する上で有用な診断ツールとして,探索を提唱する。
論文 参考訳(メタデータ) (2023-03-07T14:58:18Z) - Concept-based Explanations using Non-negative Concept Activation Vectors
and Decision Tree for CNN Models [4.452019519213712]
本稿では、概念に基づく説明書から抽出した概念に基づいて決定木を訓練することで、畳み込みニューラルネットワーク(CNN)モデルの解釈可能性を高めることができるかどうかを評価する。
論文 参考訳(メタデータ) (2022-11-19T21:42:55Z) - Neural Causal Models for Counterfactual Identification and Estimation [62.30444687707919]
本稿では,ニューラルモデルによる反事実文の評価について検討する。
まず、神経因果モデル(NCM)が十分に表現可能であることを示す。
第2に,反事実分布の同時同定と推定を行うアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-09-30T18:29:09Z) - CONVIQT: Contrastive Video Quality Estimator [63.749184706461826]
知覚ビデオ品質評価(VQA)は、多くのストリーミングおよびビデオ共有プラットフォームにおいて不可欠な要素である。
本稿では,視覚的に関連のある映像品質表現を自己指導的に学習する問題について考察する。
本研究は, 自己教師型学習を用いて, 知覚力による説得力のある表現が得られることを示す。
論文 参考訳(メタデータ) (2022-06-29T15:22:01Z) - ADVISE: ADaptive Feature Relevance and VISual Explanations for
Convolutional Neural Networks [0.745554610293091]
本稿では,機能マップの各ユニットの関連性を定量化し,活用して視覚的説明を提供する新しい説明可能性手法であるADVISEを紹介する。
我々は、画像分類タスクにおいて、AlexNet、VGG16、ResNet50、XceptionをImageNetで事前訓練した上で、我々のアイデアを広く評価する。
さらに,ADVISEは衛生チェックをパスしながら,感度および実装独立性公理を満たすことを示す。
論文 参考訳(メタデータ) (2022-03-02T18:16:57Z) - CX-ToM: Counterfactual Explanations with Theory-of-Mind for Enhancing
Human Trust in Image Recognition Models [84.32751938563426]
我々は、深層畳み込みニューラルネットワーク(CNN)による決定を説明するための、新しい説明可能なAI(XAI)フレームワークを提案する。
単発応答として説明を生成するXAIの現在の手法とは対照的に,我々は反復的な通信プロセスとして説明を行う。
本フレームワークは,機械の心と人間の心の相違を媒介し,対話における説明文のシーケンスを生成する。
論文 参考訳(メタデータ) (2021-09-03T09:46:20Z) - Finding Representative Interpretations on Convolutional Neural Networks [43.25913447473829]
我々は、多数の類似画像に対して非常に代表的な解釈を生成するために、新しい教師なしのアプローチを開発する。
我々は,共クラスタリング問題として代表解釈を求める問題を定式化し,それをサブモジュラーコストのサブモジュラーカバー問題に変換する。
提案手法の優れた性能を示す実験を行った。
論文 参考訳(メタデータ) (2021-08-13T20:17:30Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Explain by Evidence: An Explainable Memory-based Neural Network for
Question Answering [41.73026155036886]
本稿では,エビデンスに基づくメモリネットワークアーキテクチャを提案する。
データセットを要約し、その決定を下すための証拠を抽出することを学ぶ。
本モデルは,2つの質問応答データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2020-11-05T21:18:21Z) - Invertible Concept-based Explanations for CNN Models with Non-negative
Concept Activation Vectors [24.581839689833572]
コンピュータビジョンのための畳み込みニューラルネットワーク(CNN)モデルは強力だが、最も基本的な形式では説明不可能である。
近似線形モデルの特徴的重要性による最近の説明に関する研究は、入力レベル特徴から概念活性化ベクトル(CAV)の形で中間層特徴写像から特徴へと移行した。
本稿では,Ghorbani etal.のACEアルゴリズムを再考し,その欠点を克服するために,別の非可逆的概念ベース説明(ICE)フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-27T17:57:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。