Multiple quantum exceptional, diabolical, and hybrid points in multimode bosonic systems: I. Inherited and genuine singularities
- URL: http://arxiv.org/abs/2405.01666v1
- Date: Thu, 2 May 2024 18:40:14 GMT
- Title: Multiple quantum exceptional, diabolical, and hybrid points in multimode bosonic systems: I. Inherited and genuine singularities
- Authors: Kishore Thapliyal, Jan Peřina Jr., Grzegorz Chimczak, Anna Kowalewska-Kudłaszyk, Adam Miranowicz,
- Abstract summary: The existence and degeneracies of quantum exceptional, diabolical, and hybrid singularities of bosonic systems are analyzed.
Surprisingly, exceptional degeneracies of only second and third orders are revealed.
The analyzed bosonic systems exhibit rich dynamics, also owing to their common second-order diabolical degeneracies.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The existence and degeneracies of quantum exceptional, diabolical, and hybrid (i.e., diabolically degenerated exceptional) singularities of simple bosonic systems composed of up to five modes with damping and/or amplification are analyzed. Their dynamics governed by quadratic non-Hermitian Hamiltonians is followed using the Heisenberg-Langevin equations. Conditions for the observation of inherited quantum hybrid points, observed directly in the dynamics of field operators, having up to third-order exceptional and second-order diabolical degeneracies are revealed. Exceptional and diabolical genuine points and their degeneracies observed in the dynamics of second-order field-operator moments are analyzed. Surprisingly, exceptional degeneracies of only second and third orders are revealed. Nevertheless the analyzed bosonic systems exhibit rich dynamics, also owing to their common second-order diabolical degeneracies.
Related papers
- Crossing exceptional points in non-Hermitian quantum systems [41.94295877935867]
We reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.
We demonstrate a switching in the quantum interference of photons directly at the exceptional point.
arXiv Detail & Related papers (2024-07-17T14:04:00Z) - Multiple quantum exceptional, diabolical, and hybrid points in multimode bosonic systems: II. Nonconventional PT-symmetric dynamics and unidirectional coupling [0.0]
We analyze the existence and degeneracies of quantum exceptional, diabolical, and hybrid points of simple bosonic systems.
The system dynamics described by non-Hermitian Hamiltonians is governed by the Heisenberg-Langevin equations.
arXiv Detail & Related papers (2024-05-02T18:40:21Z) - Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays [41.94295877935867]
In the noninteracting case, quantized Thouless pumps can only occur when a topological singularity is encircled adiabatically.
In the presence of interactions, such topological transport can even persist for exotic paths in which the system gets arbitrarily close to the noninteracting singularity.
arXiv Detail & Related papers (2024-02-14T16:58:21Z) - Quantum Liouvillian exceptional and diabolical points for bosonic fields
with quadratic Hamiltonians: The Heisenberg-Langevin equation approach [0.0]
Equivalent approaches to determine eigenfrequencies of the Liouvillians of open quantum systems are discussed.
A simple damped two-level atom is analyzed to demonstrate the equivalence of both approaches.
The presented approach paves the general way to a detailed analysis of quantum exceptional and diabolical points in infinitely dimensional open quantum systems.
arXiv Detail & Related papers (2022-06-29T16:16:01Z) - False signals of chaos from quantum probes [0.0]
We demonstrate that two-time correlation functions, which are generalizations of out-of-time-ordered correlators, can show 'false-flags' of chaos.
We analyze a system of bosons trapped in a double-well potential and probed by a quantum dot.
arXiv Detail & Related papers (2021-08-20T22:36:06Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions.
We discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Dynamically encircling an exceptional point in a real quantum system [13.510562179346167]
The exceptional point, known as the non-Hermitian degeneracy, has special topological structure.
Here we experimentally demonstrate dynamically encircling the exceptional point with a single nitrogen-vacancy center in diamond.
Our work reveals the topological structure of the exceptional point and paves the way to comprehensively explore the exotic properties of non-Hermitian Hamiltonians in the quantum regime.
arXiv Detail & Related papers (2020-02-17T06:41:17Z) - Simulating artificial one-dimensional physics with ultra-cold fermionic
atoms: three exemplary themes [0.0]
We go over the current experimental progress in exploring the curious one-dimensional quantum world of fermions.
We go over the current experimental progress in exploring the curious one-dimensional quantum world of fermions.
arXiv Detail & Related papers (2020-01-13T13:20:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.