Dynamically encircling an exceptional point in a real quantum system
- URL: http://arxiv.org/abs/2002.06798v1
- Date: Mon, 17 Feb 2020 06:41:17 GMT
- Title: Dynamically encircling an exceptional point in a real quantum system
- Authors: Wenquan Liu, Yang Wu, Chang-Kui Duan, Xing Rong and Jiangfeng Du
- Abstract summary: The exceptional point, known as the non-Hermitian degeneracy, has special topological structure.
Here we experimentally demonstrate dynamically encircling the exceptional point with a single nitrogen-vacancy center in diamond.
Our work reveals the topological structure of the exceptional point and paves the way to comprehensively explore the exotic properties of non-Hermitian Hamiltonians in the quantum regime.
- Score: 13.510562179346167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The exceptional point, known as the non-Hermitian degeneracy, has special
topological structure, leading to various counterintuitive phenomena and novel
applications, which are refreshing our cognition of quantum physics. One
particularly intriguing behavior is the mode switch phenomenon induced by
dynamically encircling an exceptional point in the parameter space. While these
mode switches have been explored in classical systems, the experimental
investigation in the quantum regime remains elusive due to the difficulty of
constructing time-dependent non-Hermitian Hamiltonians in a real quantum
system. Here we experimentally demonstrate dynamically encircling the
exceptional point with a single nitrogen-vacancy center in diamond. The
time-dependent non-Hermitian Hamiltonians are realized utilizing a dilation
method. Both the asymmetric and symmetric mode switches have been observed. Our
work reveals the topological structure of the exceptional point and paves the
way to comprehensively explore the exotic properties of non-Hermitian
Hamiltonians in the quantum regime.
Related papers
- Multiple quantum exceptional, diabolical, and hybrid points in multimode bosonic systems: II. Nonconventional PT-symmetric dynamics and unidirectional coupling [0.0]
We analyze the existence and degeneracies of quantum exceptional, diabolical, and hybrid points of simple bosonic systems.
The system dynamics described by non-Hermitian Hamiltonians is governed by the Heisenberg-Langevin equations.
arXiv Detail & Related papers (2024-05-02T18:40:21Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Experimental observation of the Yang-Lee quantum criticality in open
systems [12.706586603485578]
We experimentally implement an imaginary magnetic field and demonstrate the Yang-Lee edge singularity through a nonunitary evolution governed by a non-Hermitian Hamiltonian in an open quantum system.
We also demonstrate unconventional scaling laws for the finite-temperature dynamics unique to quantum systems.
arXiv Detail & Related papers (2023-12-04T07:50:45Z) - Parametrically driving a quantum oscillator into exceptionality [0.0]
We consider the nature of exceptional points arising in quantum systems described within an open quantum systems approach.
In particular, we discuss how the populations, correlations, squeezed quadratures and optical spectra crucially depend on being above or below the exceptional point.
Our results invite the experimental probing of quantum resonators under two-photon driving.
arXiv Detail & Related papers (2023-07-07T13:27:20Z) - Robust Hamiltonian Engineering for Interacting Qudit Systems [50.591267188664666]
We develop a formalism for the robust dynamical decoupling and Hamiltonian engineering of strongly interacting qudit systems.
We experimentally demonstrate these techniques in a strongly-interacting, disordered ensemble of spin-1 nitrogen-vacancy centers.
arXiv Detail & Related papers (2023-05-16T19:12:41Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Measuring quantum geometric tensor of non-Abelian system in
superconducting circuits [21.82634956452952]
We use a four-qubit quantum system in superconducting circuits to construct a degenerate Hamiltonian with parametric modulation.
We reveal its topological feature by extracting the topological invariant, demonstrating an effective protocol for quantum simulation of a non-Abelian system.
arXiv Detail & Related papers (2022-09-26T01:08:39Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Non-normal Hamiltonian dynamics in quantum systems and its realization
on quantum computers [0.0]
We study the dynamics driven by the non-normal matrix (Hamiltonian) realized as a continuous quantum trajectory of the Lindblad master equation in open quantum systems.
We formulate the transient suppression of the decay rate of the norm due to the pseudospectral behavior and derive a non-Hermitian/non-normal analog of the time-energy uncertainty relation.
arXiv Detail & Related papers (2021-07-18T13:29:28Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.