Individual Fairness Through Reweighting and Tuning
- URL: http://arxiv.org/abs/2405.01711v2
- Date: Tue, 7 May 2024 19:55:01 GMT
- Title: Individual Fairness Through Reweighting and Tuning
- Authors: Abdoul Jalil Djiberou Mahamadou, Lea Goetz, Russ Altman,
- Abstract summary: Inherent bias within society can be amplified and perpetuated by artificial intelligence (AI) systems.
Recently, Graph Laplacian Regularizer (GLR) has been used as a substitute for the common Lipschitz condition to enhance individual fairness.
In this work, we investigated whether defining a GLR independently on the train and target data could maintain similar accuracy.
- Score: 0.23395944472515745
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inherent bias within society can be amplified and perpetuated by artificial intelligence (AI) systems. To address this issue, a wide range of solutions have been proposed to identify and mitigate bias and enforce fairness for individuals and groups. Recently, Graph Laplacian Regularizer (GLR), a regularization technique from the semi-supervised learning literature has been used as a substitute for the common Lipschitz condition to enhance individual fairness. Notable prior work has shown that enforcing individual fairness through a GLR can improve the transfer learning accuracy of AI models under covariate shifts. However, the prior work defines a GLR on the source and target data combined, implicitly assuming that the target data are available at train time, which might not hold in practice. In this work, we investigated whether defining a GLR independently on the train and target data could maintain similar accuracy. Furthermore, we introduced the Normalized Fairness Gain score (NFG) to measure individual fairness by measuring the amount of gained fairness when a GLR is used versus not. We evaluated the new and original methods under NFG, the Prediction Consistency (PC), and traditional classification metrics on the German Credit Approval dataset. The results showed that the two models achieved similar statistical mean performances over five-fold cross-validation. Furthermore, the proposed metric showed that PC scores can be misleading as the scores can be high and statistically similar to fairness-enhanced models while NFG scores are small. This work therefore provides new insights into when a GLR effectively enhances individual fairness and the pitfalls of PC.
Related papers
- Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.
FAST surpasses state-of-the-art baselines with superior debiasing performance.
This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
We first theoretically demonstrate the inherent connection between distribution shift, data perturbation, and model weight perturbation.
We then analyze the sufficient conditions to guarantee fairness for the target dataset.
Motivated by these sufficient conditions, we propose robust fairness regularization (RFR)
arXiv Detail & Related papers (2023-03-06T17:19:23Z) - Fairness Reprogramming [42.65700878967251]
We propose a new generic fairness learning paradigm, called FairReprogram, which incorporates the model reprogramming technique.
Specifically, FairReprogram considers the case where models can not be changed and appends to the input a set of perturbations, called the fairness trigger.
We show both theoretically and empirically that the fairness trigger can effectively obscure demographic biases in the output prediction of fixed ML models.
arXiv Detail & Related papers (2022-09-21T09:37:00Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
We propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases.
A user can detect the presence of bias against a group by identifying unfair causal relationships in the causal network.
For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset.
arXiv Detail & Related papers (2022-08-10T03:41:48Z) - Source-Free Progressive Graph Learning for Open-Set Domain Adaptation [44.63301903324783]
Open-set domain adaptation (OSDA) has gained considerable attention in many visual recognition tasks.
We propose a Progressive Graph Learning (PGL) framework that decomposes the target hypothesis space into the shared and unknown subspaces.
We also tackle a more realistic source-free open-set domain adaptation (SF-OSDA) setting that makes no assumption about the coexistence of source and target domains.
arXiv Detail & Related papers (2022-02-13T01:19:41Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Increasing Fairness in Predictions Using Bias Parity Score Based Loss
Function Regularization [0.8594140167290099]
We introduce a family of fairness enhancing regularization components that we use in conjunction with the traditional binary-cross-entropy based accuracy loss.
We deploy them in the context of a recidivism prediction task as well as on a census-based adult income dataset.
arXiv Detail & Related papers (2021-11-05T17:42:33Z) - Balancing Biases and Preserving Privacy on Balanced Faces in the Wild [50.915684171879036]
There are demographic biases present in current facial recognition (FR) models.
We introduce our Balanced Faces in the Wild dataset to measure these biases across different ethnic and gender subgroups.
We find that relying on a single score threshold to differentiate between genuine and imposters sample pairs leads to suboptimal results.
We propose a novel domain adaptation learning scheme that uses facial features extracted from state-of-the-art neural networks.
arXiv Detail & Related papers (2021-03-16T15:05:49Z) - Fairness by Explicability and Adversarial SHAP Learning [0.0]
We propose a new definition of fairness that emphasises the role of an external auditor and model explicability.
We develop a framework for mitigating model bias using regularizations constructed from the SHAP values of an adversarial surrogate model.
We demonstrate our approaches using gradient and adaptive boosting on: a synthetic dataset, the UCI Adult (Census) dataset and a real-world credit scoring dataset.
arXiv Detail & Related papers (2020-03-11T14:36:34Z) - Recovering from Biased Data: Can Fairness Constraints Improve Accuracy? [11.435833538081557]
Empirical Risk Minimization (ERM) may produce a classifier that not only is biased but also has suboptimal accuracy on the true data distribution.
We examine the ability of fairness-constrained ERM to correct this problem.
We also consider other recovery methods including reweighting the training data, Equalized Odds, and Demographic Parity.
arXiv Detail & Related papers (2019-12-02T22:00:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.