Toward end-to-end interpretable convolutional neural networks for waveform signals
- URL: http://arxiv.org/abs/2405.01815v1
- Date: Fri, 3 May 2024 02:24:27 GMT
- Title: Toward end-to-end interpretable convolutional neural networks for waveform signals
- Authors: Linh Vu, Thu Tran, Wern-Han Lim, Raphael Phan,
- Abstract summary: This paper introduces a novel convolutional neural networks (CNN) framework tailored for end-to-end audio deep learning models.
By benchmarking experiments on three standard speech emotion recognition datasets with five-fold cross-validation, our framework outperforms Mel spectrogram features by up to seven percent.
- Score: 0.7499722271664147
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper introduces a novel convolutional neural networks (CNN) framework tailored for end-to-end audio deep learning models, presenting advancements in efficiency and explainability. By benchmarking experiments on three standard speech emotion recognition datasets with five-fold cross-validation, our framework outperforms Mel spectrogram features by up to seven percent. It can potentially replace the Mel-Frequency Cepstral Coefficients (MFCC) while remaining lightweight. Furthermore, we demonstrate the efficiency and interpretability of the front-end layer using the PhysioNet Heart Sound Database, illustrating its ability to handle and capture intricate long waveform patterns. Our contributions offer a portable solution for building efficient and interpretable models for raw waveform data.
Related papers
- WiNet: Wavelet-based Incremental Learning for Efficient Medical Image Registration [68.25711405944239]
Deep image registration has demonstrated exceptional accuracy and fast inference.
Recent advances have adopted either multiple cascades or pyramid architectures to estimate dense deformation fields in a coarse-to-fine manner.
We introduce a model-driven WiNet that incrementally estimates scale-wise wavelet coefficients for the displacement/velocity field across various scales.
arXiv Detail & Related papers (2024-07-18T11:51:01Z) - Wav-KAN: Wavelet Kolmogorov-Arnold Networks [3.38220960870904]
Wav-KAN is an innovative neural network architecture that leverages the Wavelet Kolmogorov-Arnold Networks (Wav-KAN) framework to enhance interpretability and performance.
Our results highlight the potential of Wav-KAN as a powerful tool for developing interpretable and high-performance neural networks.
arXiv Detail & Related papers (2024-05-21T14:36:16Z) - Bayesian inference and neural estimation of acoustic wave propagation [10.980762871305279]
We introduce a novel framework which combines physics and machine learning methods to analyse acoustic signals.
Three methods are developed for this task: a Bayesian inference approach for inferring the spectral acoustics characteristics, a neural-physical model which equips a neural network with forward and backward physical losses, and the non-linear least squares approach which serves as benchmark.
The simplicity and efficiency of this framework is empirically validated on simulated data.
arXiv Detail & Related papers (2023-05-28T15:14:46Z) - Audio-Visual Efficient Conformer for Robust Speech Recognition [91.3755431537592]
We propose to improve the noise of the recently proposed Efficient Conformer Connectionist Temporal Classification architecture by processing both audio and visual modalities.
Our experiments show that using audio and visual modalities allows to better recognize speech in the presence of environmental noise and significantly accelerate training, reaching lower WER with 4 times less training steps.
arXiv Detail & Related papers (2023-01-04T05:36:56Z) - Adaptive re-calibration of channel-wise features for Adversarial Audio
Classification [0.0]
We propose a recalibration of features using attention feature fusion for synthetic speech detection.
We compare its performance against different detection methods including End2End models and Resnet-based models.
We also demonstrate that the combination of Linear frequency cepstral coefficients (LFCC) and Mel Frequency cepstral coefficients (MFCC) using the attentional feature fusion technique creates better input features representations.
arXiv Detail & Related papers (2022-10-21T04:21:56Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - From Environmental Sound Representation to Robustness of 2D CNN Models
Against Adversarial Attacks [82.21746840893658]
This paper investigates the impact of different standard environmental sound representations (spectrograms) on the recognition performance and adversarial attack robustness of a victim residual convolutional neural network.
We show that while the ResNet-18 model trained on DWT spectrograms achieves a high recognition accuracy, attacking this model is relatively more costly for the adversary.
arXiv Detail & Related papers (2022-04-14T15:14:08Z) - Complementing Handcrafted Features with Raw Waveform Using a
Light-weight Auxiliary Model [1.7149364927872013]
An emerging trend in audio processing is capturing low-level speech representations from raw waveforms.
This paper proposes an Auxiliary Rawnet model to complement handcrafted features with features learned from raw waveforms.
A key benefit of the approach is that it can improve accuracy at a relatively low computational cost.
arXiv Detail & Related papers (2021-09-06T23:32:10Z) - NeRF in detail: Learning to sample for view synthesis [104.75126790300735]
Neural radiance fields (NeRF) methods have demonstrated impressive novel view synthesis.
In this work we address a clear limitation of the vanilla coarse-to-fine approach -- that it is based on a performance and not trained end-to-end for the task at hand.
We introduce a differentiable module that learns to propose samples and their importance for the fine network, and consider and compare multiple alternatives for its neural architecture.
arXiv Detail & Related papers (2021-06-09T17:59:10Z) - From Sound Representation to Model Robustness [82.21746840893658]
We investigate the impact of different standard environmental sound representations (spectrograms) on the recognition performance and adversarial attack robustness of a victim residual convolutional neural network.
Averaged over various experiments on three environmental sound datasets, we found the ResNet-18 model outperforms other deep learning architectures.
arXiv Detail & Related papers (2020-07-27T17:30:49Z) - Single Channel Speech Enhancement Using Temporal Convolutional Recurrent
Neural Networks [23.88788382262305]
temporal convolutional recurrent network (TCRN) is an end-to-end model that directly map noisy waveform to clean waveform.
We show that our model is able to improve the performance of model, compared with existing convolutional recurrent networks.
arXiv Detail & Related papers (2020-02-02T04:26:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.