論文の概要: Feed-Forward Probabilistic Error Cancellation with Noisy Recovery Gates
- arxiv url: http://arxiv.org/abs/2405.01833v2
- Date: Thu, 17 Oct 2024 01:03:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 17:04:10.884856
- Title: Feed-Forward Probabilistic Error Cancellation with Noisy Recovery Gates
- Title(参考訳): ノイズ回復ゲートを用いたフィードフォワード確率誤差キャンセラ
- Authors: Leo Kurosawa, Yoshiyuki Saito, Xinwei Lee, Xinjian Yan, Ningyi Xie, Dongsheng Cai, Jungpil Shin, Nobuyoshi Asai,
- Abstract要約: 我々は、FFPEC(Feed-Forward PEC)と呼ばれるゲート挿入によるノイズを考慮したPECの改良版を提案する。
FFPECは、リカバリゲートによって誘導されるノイズをキャンセルすることで、期待値の偏りのない推定器を提供する。
FFPECは従来のPEC法と比較して,解析的評価により精度の高い予測値が得られることを示した。
- 参考スコア(独自算出の注目度): 0.846055772146036
- License:
- Abstract: Probabilistic Error Cancellation (PEC) aims to improve the accuracy of expectation values for observables. This is accomplished using the probabilistic insertion of recovery gates, which correspond to the inverse of errors. However, the inserted recovery gates also induce errors. Thus, it is difficult to obtain accurate expectation values with PEC since the estimator of PEC has a bias due to noise induced by recovery gates. To address this challenge, we propose an improved version of PEC that considers the noise resulting from gate insertion, called Feed-Forward PEC (FFPEC). FFPEC provides an unbiased estimator of expectation values by cancelling out the noise induced by recovery gates. We demonstrate that FFPEC yields more accurate expectation values compared to the conventional PEC method through analytical evaluations. Numerical experiments are used to evaluate analytical results.
- Abstract(参考訳): Probabilistic Error Cancellation (PEC)は、観測対象の予測値の精度を向上させることを目的としている。
これは、リカバリゲートの確率的挿入によって達成され、これは誤りの逆に対応する。
しかし、挿入されたリカバリゲートもエラーを引き起こす。
したがって、PECの推定器は、回復ゲートによって誘導されるノイズによるバイアスがあるため、PECによる正確な予測値を得るのは難しい。
この課題に対処するため,FFPEC (Feed-Forward PEC) と呼ばれるゲート挿入によるノイズを考慮したPECの改良版を提案する。
FFPECは、リカバリゲートによって誘導されるノイズをキャンセルすることで、期待値の偏りのない推定器を提供する。
FFPECは従来のPEC法と比較して,解析的評価により精度の高い予測値が得られることを示した。
数値解析実験は分析結果を評価するために用いられる。
関連論文リスト
- Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
本稿では,リスク・サーキングとリスク・アバース・ポリシー最適化のいずれにも適用可能な汎用ポリシー最適化アルゴリズムQ-Uncertainty Soft Actor-Critic (QU-SAC)を導入する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - Regression with Cost-based Rejection [30.43900105405108]
本稿では, ある拒絶コストを前提として, モデルがいくつかの例で予測を下方修正できる新たな回帰問題について検討する。
我々はベイズ最適解を導出し、最適モデルが拒絶コストよりも分散が大きい例について予測を下さなければならないことを示す。
論文 参考訳(メタデータ) (2023-11-08T09:33:21Z) - Locality and Error Mitigation of Quantum Circuits [0.7366405857677226]
確率誤差キャンセラ法(PEC)とゼロノイズ外挿法(ZNE)の2つの主要な誤差軽減手法について検討・改善する。
PECでは、対象の局所観測値に対するユニタリ回路の光円錐を考慮に入れた新しい推定器を導入する。
論文 参考訳(メタデータ) (2023-03-11T20:43:36Z) - Sample-Efficient Optimisation with Probabilistic Transformer Surrogates [66.98962321504085]
本稿では,ベイズ最適化における最先端確率変換器の適用可能性について検討する。
トレーニング手順と損失定義から生じる2つの欠点を観察し、ブラックボックス最適化のプロキシとして直接デプロイすることを妨げる。
1)非一様分散点を前処理するBO調整トレーニング,2)予測性能を向上させるために最適な定常点をフィルタする新しい近似後正則整定器トレードオフ精度と入力感度を導入する。
論文 参考訳(メタデータ) (2022-05-27T11:13:17Z) - Error-based Knockoffs Inference for Controlled Feature Selection [49.99321384855201]
本手法では, ノックオフ特徴量, エラーベース特徴重要度統計量, ステップダウン手順を一体化して, エラーベースのノックオフ推定手法を提案する。
提案手法では回帰モデルを指定する必要はなく,理論的保証で特徴選択を処理できる。
論文 参考訳(メタデータ) (2022-03-09T01:55:59Z) - GSC Loss: A Gaussian Score Calibrating Loss for Deep Learning [16.260520216972854]
ディープニューラルネットワーク(DNN)が生み出す予測スコアを校正するために,一般ガウススコア校正(GSC)損失を提案する。
10以上のベンチマークデータセットに対する大規模な実験は、提案されたGSC損失が、さまざまな視覚的タスクにおいて一貫した、重要なパフォーマンス向上をもたらすことを実証している。
論文 参考訳(メタデータ) (2022-03-02T02:52:23Z) - Doubly Robust Distributionally Robust Off-Policy Evaluation and Learning [59.02006924867438]
オフ政治評価と学習(OPE/L)は、オフラインの観察データを使用してより良い意思決定を行う。
近年の研究では、分散ロバストなOPE/L (DROPE/L) が提案されているが、この提案は逆正則重み付けに依存している。
KL分散不確実性集合を用いたDROPE/Lの最初のDRアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-02-19T20:00:44Z) - Loss-calibrated expectation propagation for approximate Bayesian
decision-making [24.975981795360845]
損失校正予測伝搬(Loss-EP)は,損失校正予測伝搬の変種である。
我々は、この非対称性が、近似で取得する「有用な」情報に劇的な結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-01-10T01:42:28Z) - Robust and Adaptive Temporal-Difference Learning Using An Ensemble of
Gaussian Processes [70.80716221080118]
本稿では、時間差学習(TD)による政策評価の世代的視点について考察する。
OS-GPTDアプローチは、状態-逆ペアのシーケンスを観測することにより、与えられたポリシーの値関数を推定するために開発された。
1つの固定カーネルに関連する限られた表現性を緩和するために、GP前の重み付けアンサンブル(E)を用いて代替のスキームを生成する。
論文 参考訳(メタデータ) (2021-12-01T23:15:09Z) - Error mitigation via verified phase estimation [0.25295633594332334]
本稿では,量子位相推定に基づく新しい誤差低減手法を提案する。
制御量子ビットを使わずに機能に適応できることを示す。
論文 参考訳(メタデータ) (2020-10-06T07:44:10Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
確率的に統計的に一貫性があり、最適に結合し、再現可能な信頼性図を自動生成するCORP手法を導入する。
コーパスは非パラメトリックアイソトニック回帰に基づいており、プール・アジャセント・ヴァイオレータ(PAV)アルゴリズムによって実装されている。
論文 参考訳(メタデータ) (2020-08-07T08:22:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。