Many-Body Configurational Spectral Splitting between Trion and Charged Exciton in a Monolayer Semiconductor
- URL: http://arxiv.org/abs/2405.01862v1
- Date: Fri, 3 May 2024 05:30:10 GMT
- Title: Many-Body Configurational Spectral Splitting between Trion and Charged Exciton in a Monolayer Semiconductor
- Authors: Jiacheng Tang, Cun-Zheng Ning,
- Abstract summary: A three-body system of electrons (e) and holes (h) (2e1h) in a two-band semiconductor is commonly believed to be associated with two spectral peaks for the exciton and trion.
We show that while the three-body BSE in a two-band model can reproduce all spectral features, the cluster-expansion technique shows that the two peaks correspond to the charged exciton (e)(eh) and trion (eeh) respectively.
- Score: 0.9208007322096533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many-body electron-hole complexes in a semiconductor are important both from a fundamental physics point of view and for practical device applications. A three-body system of electrons (e) and holes (h) (2e1h, or 1e2h) in a two-band semiconductor is commonly believed to be associated with two spectral peaks for the exciton and trion (or charged exciton), respectively. But both the validity of this understanding and the physical meaning of a trion or charged exciton have not been thoroughly examined. From the physics point of view, there are two different configurations, (e)(eh) or (eeh), which could be considered charged exciton and trion, respectively. Here (...) represents an irreducible cluster with respect to Coulomb interactions. In this paper, we consider these issues related to the 2e1h three-body problem theoretically and experimentally using monolayer MoTe2 as an example. Our theoretical tools involve the three-body Bethe-Salpeter Equation (BSE) and the cluster expansion technique, especially their correspondence. Experimentally, we measure the photoluminescence spectrum on a gate-controlled monolayer MoTe2. We found two spectral peaks that are 21 and 4 meV, respectively, below the exciton peak, in contrast to the single "trion" peak from the conventional understanding. We show that, while the three-body BSE in a two-band model can reproduce all spectral features, the cluster-expansion technique shows that the two peaks correspond to the charged exciton (e)(eh) and trion (eeh), respectively. In other words, there is a spectral splitting due to the two different many-body configurations. Furthermore, we find that the trion only exists in the intervalley case, while the charged exciton exists both for the intervalley and intravalley cases.
Related papers
- Non-bosonic moir\'e excitons [0.0]
We show that excitons obey an angular momentum commutation relation that is generally non-bosonic.
This emergent spin description of excitons indicates a limitation to their occupancy on each site.
Our systematic theory provides guidelines for future research on the many-body physics of moir'e excitons.
arXiv Detail & Related papers (2023-10-30T18:48:51Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - The Quadruplon in a Monolayer Semiconductor [9.323335139073711]
We present the first experimental evidence for the existence of a four-body irreducible entity, the quadruplon.
In contrast to a bi-exciton which consists of two weakly bound excitons, a quadruplon consists of two electrons and two holes without the presence of an exciton.
arXiv Detail & Related papers (2022-07-26T09:10:33Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Molecular formations and spectra due to electron correlations in
three-electron hybrid double-well qubits [0.0]
Wigner molecules (WMs) form in three-electron hybrid qubits based on GaAs asymmetric double quantum dots.
FCI calculations enable prediction of the energy spectra and the intrinsic spatial and spin structures of the many-body wave functions.
FCI methodology can be straightforwardly extended to treat valleytronic two-band Si/SiGe hybrid qubits.
arXiv Detail & Related papers (2022-04-05T14:28:14Z) - Resonance Fluorescence from a two-level artificial atom strongly coupled
to a single-mode cavity [0.719049283096544]
We experimentally demonstrate the resonance fluorescence of a two-level artificial atom strongly coupled to a single-mode cavity field.
The effect was theoretically predicted thirty years ago by Savage.
arXiv Detail & Related papers (2022-02-24T13:06:03Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z) - Exciton-polarons in two-dimensional semiconductors and the
Tavis-Cummings model [0.0]
We use an analogy to the Tavis-Cummings model of quantum optics to show that an exciton-polaron can be understood as a hybrid quasiparticle.
We anticipate our results to help explain the striking differences between absorption and emission spectra of two-dimensional semiconductors.
arXiv Detail & Related papers (2020-06-29T12:06:35Z) - Exotic photonic molecules via Lennard-Jones-like potentials [48.7576911714538]
We show a novel Lennard-Jones-like potential between photons coupled to the Rydberg states via electromagnetically induced transparency (EIT)
This potential is achieved by tuning Rydberg states to a F"orster resonance with other Rydberg states.
For a few-body problem, the multi-body interactions have a significant impact on the geometry of the molecular ground state.
arXiv Detail & Related papers (2020-03-17T18:00:01Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.