論文の概要: Explainable Risk Classification in Financial Reports
- arxiv url: http://arxiv.org/abs/2405.01881v1
- Date: Fri, 3 May 2024 06:56:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 13:35:25.953757
- Title: Explainable Risk Classification in Financial Reports
- Title(参考訳): 財務報告における説明可能なリスク分類
- Authors: Xue Wen Tan, Stanley Kok,
- Abstract要約: 米国内の上場企業はすべて、同社の豊富な情報を含む年間10Kの財務報告を提出する必要がある。
本研究では,FinBERT-XRCと呼ばれる,10-Kのレポートを入力として記述可能なディープラーニングモデルを提案する。
- 参考スコア(独自算出の注目度): 1.2200609701777907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Every publicly traded company in the US is required to file an annual 10-K financial report, which contains a wealth of information about the company. In this paper, we propose an explainable deep-learning model, called FinBERT-XRC, that takes a 10-K report as input, and automatically assesses the post-event return volatility risk of its associated company. In contrast to previous systems, our proposed model simultaneously offers explanations of its classification decision at three different levels: the word, sentence, and corpus levels. By doing so, our model provides a comprehensive interpretation of its prediction to end users. This is particularly important in financial domains, where the transparency and accountability of algorithmic predictions play a vital role in their application to decision-making processes. Aside from its novel interpretability, our model surpasses the state of the art in predictive accuracy in experiments on a large real-world dataset of 10-K reports spanning six years.
- Abstract(参考訳): 米国内の上場企業はすべて、同社の豊富な情報を含む年間10Kの財務報告を提出する必要がある。
本稿では、FinBERT-XRCと呼ばれる10-Kのレポートを入力として、関連する企業の再帰変動リスクを自動的に評価する、説明可能なディープラーニングモデルを提案する。
従来のシステムとは対照的に,提案モデルでは,単語,文,コーパスの3段階の分類決定について,同時に説明を行った。
これにより、エンドユーザーに予測の包括的解釈を提供する。
これは、アルゴリズム予測の透明性と説明責任が意思決定プロセスへの応用において重要な役割を果たす金融分野において特に重要である。
新たな解釈可能性とは別に、我々のモデルは6年間にわたる10-Kレポートの大規模な実世界のデータセットの実験において、最先端の予測精度を上回ります。
関連論文リスト
- A Scalable Data-Driven Framework for Systematic Analysis of SEC 10-K Filings Using Large Language Models [0.0]
SEC10-Kの申請に基づいて企業の業績を分析し,評価する,新たなデータ駆動型アプローチを提案する。
提案手法は、データパイプラインを実行して視覚化を作成するためのノーコードソリューションとして、対話型GUI上に実装される。
このアプリケーションは評価結果を示し、企業業績の年次比較を提供する。
論文 参考訳(メタデータ) (2024-09-26T06:57:22Z) - Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - FinReport: Explainable Stock Earnings Forecasting via News Factor
Analyzing Model [14.217469307568466]
我々は、一般投資家が情報を収集し、分析し、要約後にレポートを生成するための自動システムFinReportを構築することを目指している。
具体的には、ファイナンシャルニュースの発表と、レポートのプロフェッショナル主義を保証するための多要素モデルに基づいています。
FinReportは3つのモジュールで構成されている。ニュース分解モジュール、リターン予測モジュール、リスクアセスメントモジュールである。
論文 参考訳(メタデータ) (2024-03-05T04:33:36Z) - On the Societal Impact of Open Foundation Models [93.67389739906561]
ここでは、広く利用可能なモデルウェイトを持つものとして定義されている、オープンファンデーションモデルに重点を置いています。
オープンファンデーションモデルの5つの特徴を識別し,その利点とリスクを両立させる。
論文 参考訳(メタデータ) (2024-02-27T16:49:53Z) - Numerical Claim Detection in Finance: A New Financial Dataset, Weak-Supervision Model, and Market Analysis [4.575870619860645]
ファイナンシャルドメインにおけるクレーム検出タスクのための新たな財務データセットを構築した。
本稿では,対象物の専門家(SME)の知識を集約関数に組み込んだ,新たな弱スーパービジョンモデルを提案する。
ここでは、利益の急落と楽観的な指標への回帰の依存を観察する。
論文 参考訳(メタデータ) (2024-02-18T22:55:26Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of
Open Information Extraction [50.62245481416744]
実世界におけるオープン情報抽出モデルの評価をシミュレートする最初のベンチマークを示す。
我々は、それぞれの例が知識不変のcliqueである大規模なテストベッドを設計し、注釈付けする。
さらにロバスト性計量を解明することにより、その性能が全体の傾きに対して一貫して正確であるならば、モデルはロバストであると判断される。
論文 参考訳(メタデータ) (2023-05-23T12:05:09Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - A transformer-based model for default prediction in mid-cap corporate
markets [13.535770763481905]
時価総額が100億ドル未満の中堅企業について調査する。
中間項の既定確率項構造を予測することを目的とする。
私たちは、どのデータソースがデフォルトのリスクに最も貢献しているかを理解しています。
論文 参考訳(メタデータ) (2021-11-18T19:01:00Z) - FinQA: A Dataset of Numerical Reasoning over Financial Data [52.7249610894623]
我々は、大量の財務文書の分析を自動化することを目的として、財務データに関する深い質問に答えることに重点を置いている。
我々は,金融専門家が作成した財務報告に対して質問回答のペアを用いた,新たな大規模データセットFinQAを提案する。
その結果、人気があり、大規模で、事前訓練されたモデルは、金融知識を得るための専門的な人間には程遠いことが示される。
論文 参考訳(メタデータ) (2021-09-01T00:08:14Z) - Supporting Financial Inclusion with Graph Machine Learning and Super-App
Alternative Data [63.942632088208505]
スーパーアプリは、ユーザーとコマースの相互作用についての考え方を変えました。
本稿では,スーパーアプリ内のユーザ間のインタラクションの違いが,借り手行動を予測する新たな情報源となるかを検討する。
論文 参考訳(メタデータ) (2021-02-19T15:13:06Z) - Financial Data Analysis Using Expert Bayesian Framework For Bankruptcy
Prediction [0.0]
本稿では,エキスパートベイズフレームワークを用いた生成モデリングの新たな手法を提案する。
提案フレームワークの最大の利点は、モデリングプロセスに専門家の判断を明示的に取り入れることである。
提案手法は、金融や医療診断など、高度に規制された、あるいは安全性の高い応用に適している。
論文 参考訳(メタデータ) (2020-10-19T19:09:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。