A Full Adagrad algorithm with O(Nd) operations
- URL: http://arxiv.org/abs/2405.01908v1
- Date: Fri, 3 May 2024 08:02:08 GMT
- Title: A Full Adagrad algorithm with O(Nd) operations
- Authors: Antoine Godichon-Baggioni, Wei Lu, Bruno Portier,
- Abstract summary: The study offers efficient and practical algorithms for large-scale applications.
This innovative strategy significantly reduces the complexity and resource demands typically associated with full-matrix methods.
- Score: 4.389938747401259
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A novel approach is given to overcome the computational challenges of the full-matrix Adaptive Gradient algorithm (Full AdaGrad) in stochastic optimization. By developing a recursive method that estimates the inverse of the square root of the covariance of the gradient, alongside a streaming variant for parameter updates, the study offers efficient and practical algorithms for large-scale applications. This innovative strategy significantly reduces the complexity and resource demands typically associated with full-matrix methods, enabling more effective optimization processes. Moreover, the convergence rates of the proposed estimators and their asymptotic efficiency are given. Their effectiveness is demonstrated through numerical studies.
Related papers
- $ψ$DAG: Projected Stochastic Approximation Iteration for DAG Structure Learning [6.612096312467342]
Learning the structure of Directed A Graphs (DAGs) presents a significant challenge due to the vast search space of possible graphs, which scales with the number of nodes.
Recent advancements have redefined this problem as a continuous optimization task by incorporating differentiable a exponentiallyity constraints.
We present a novel framework for learning DAGs, employing a Approximation approach integrated with Gradient Descent (SGD)-based optimization techniques.
arXiv Detail & Related papers (2024-10-31T12:13:11Z) - Fast Two-Time-Scale Stochastic Gradient Method with Applications in Reinforcement Learning [5.325297567945828]
We propose a new method for two-time-scale optimization that achieves significantly faster convergence than the prior arts.
We characterize the proposed algorithm under various conditions and show how it specializes on online sample-based methods.
arXiv Detail & Related papers (2024-05-15T19:03:08Z) - Online estimation of the inverse of the Hessian for stochastic optimization with application to universal stochastic Newton algorithms [4.389938747401259]
This paper addresses second-order optimization for estimating the minimizer of a convex function written as an expectation.
A direct recursive estimation technique for the inverse Hessian matrix using a Robbins-Monro procedure is introduced.
Above all, it allows to develop universal Newton methods and investigate the efficiency of the proposed approach.
arXiv Detail & Related papers (2024-01-15T13:58:30Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Adaptive Stochastic Optimisation of Nonconvex Composite Objectives [2.1700203922407493]
We propose and analyse a family of generalised composite mirror descent algorithms.
With adaptive step sizes, the proposed algorithms converge without requiring prior knowledge of the problem.
We exploit the low-dimensional structure of the decision sets for high-dimensional problems.
arXiv Detail & Related papers (2022-11-21T18:31:43Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - Adaptive Importance Sampling for Finite-Sum Optimization and Sampling
with Decreasing Step-Sizes [4.355567556995855]
We propose Avare, a simple and efficient algorithm for adaptive importance sampling for finite-sum optimization and sampling with decreasing step-sizes.
Under standard technical conditions, we show that Avare achieves $mathcalO(T2/3)$ and $mathcalO(T5/6)$ dynamic regret for SGD and SGLD respectively when run with $mathcalO(T5/6)$ step sizes.
arXiv Detail & Related papers (2021-03-23T00:28:15Z) - Variance-Reduced Off-Policy Memory-Efficient Policy Search [61.23789485979057]
Off-policy policy optimization is a challenging problem in reinforcement learning.
Off-policy algorithms are memory-efficient and capable of learning from off-policy samples.
arXiv Detail & Related papers (2020-09-14T16:22:46Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.