論文の概要: An Attention Based Pipeline for Identifying Pre-Cancer Lesions in Head and Neck Clinical Images
- arxiv url: http://arxiv.org/abs/2405.01937v2
- Date: Tue, 7 May 2024 11:15:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 13:00:13.568534
- Title: An Attention Based Pipeline for Identifying Pre-Cancer Lesions in Head and Neck Clinical Images
- Title(参考訳): 頭頸部画像における前癌病変の同定のための注意に基づくパイプライン
- Authors: Abdullah Alsalemi, Anza Shakeel, Mollie Clark, Syed Ali Khurram, Shan E Ahmed Raza,
- Abstract要約: 頭頸部癌は外科生検後に専門病院で診断されるが、診断が遅れる可能性がある。
疑わしい病変,分節を同定し,非異形成性,異形成性,癌性病変に分類するアテンションベースパイプラインを提案する。
- 参考スコア(独自算出の注目度): 1.0957311485487375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early detection of cancer can help improve patient prognosis by early intervention. Head and neck cancer is diagnosed in specialist centres after a surgical biopsy, however, there is a potential for these to be missed leading to delayed diagnosis. To overcome these challenges, we present an attention based pipeline that identifies suspected lesions, segments, and classifies them as non-dysplastic, dysplastic and cancerous lesions. We propose (a) a vision transformer based Mask R-CNN network for lesion detection and segmentation of clinical images, and (b) Multiple Instance Learning (MIL) based scheme for classification. Current results show that the segmentation model produces segmentation masks and bounding boxes with up to 82% overlap accuracy score on unseen external test data and surpassing reviewed segmentation benchmarks. Next, a classification F1-score of 85% on the internal cohort test set. An app has been developed to perform lesion segmentation taken via a smart device. Future work involves employing endoscopic video data for precise early detection and prognosis.
- Abstract(参考訳): 早期のがん検出は早期の介入によって患者の予後を改善するのに役立つ。
頭頸部癌は外科生検後に専門病院で診断されるが、診断が遅れる可能性がある。
これらの課題を克服するため,疑わしい病変,セグメントを同定し,非異形成性病変,異形成性病変,癌性病変と分類するアテンションベースパイプラインを提案する。
特集にあたって
(a)臨床画像の病変検出・セグメント化のための視覚変換器を用いたMask R-CNNネットワーク
b) 分類のためのマルチインスタンス学習(MIL)に基づくスキーム。
その結果, セグメンテーションモデルでは, セグメンテーションマスクとバウンディングボックスを最大82%のオーバーラップ精度で生成し, 検証されたセグメンテーションベンチマークを上回った。
次に、内部コホートテストセットの分類F1スコアが85%である。
スマートデバイスを介して、病変のセグメンテーションを行うためのアプリが開発されている。
今後の研究は、正確な早期発見と予後のための内視鏡的ビデオデータの利用である。
関連論文リスト
- ISLES'24: Improving final infarct prediction in ischemic stroke using multimodal imaging and clinical data [3.2816454618159008]
本研究はISLES'24課題であり, 術前急性期脳梗塞画像と臨床データから最終治療後の脳梗塞予測に対処するものである。
本研究の貢献は2つある: まず, ISLES'24チャレンジを通じて最終脳梗塞セグメンテーションアルゴリズムの標準化ベンチマークを導入する; 次に, マルチモーダルイメージングと臨床データ戦略を用いた梗塞セグメンテーションに関する洞察を提供する。
論文 参考訳(メタデータ) (2024-08-20T16:01:05Z) - Deep Rib Fracture Instance Segmentation and Classification from CT on
the RibFrac Challenge [66.86170104167608]
RibFrac Challengeは、660のCTスキャンから5,000以上のリブ骨折のベンチマークデータセットを提供する。
MICCAI 2020チャレンジ期間中に243つの結果が評価され、7つのチームがチャレンジサマリーに参加するために招待された。
この分析により、いくつかのトップリブ骨折検出ソリューションが、人間の専門家と同等かそれ以上の性能を達成したことが明らかになった。
論文 参考訳(メタデータ) (2024-02-14T18:18:33Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - Automated Segmentation and Recurrence Risk Prediction of Surgically
Resected Lung Tumors with Adaptive Convolutional Neural Networks [3.5413688566798096]
肺がんは、がん関連死亡の重大な原因である。
本稿では,肺腫瘍のセグメンテーションと再発リスク予測における畳み込みニューラルネットワーク(CNN)の利用について検討する。
我々の知る限りでは、これは最初の完全自動化されたセグメンテーションと再発リスク予測システムである。
論文 参考訳(メタデータ) (2022-09-17T23:06:22Z) - Lesion detection in contrast enhanced spectral mammography [0.0]
近年の乳房画像解析のためのニューラルネットワークモデルの出現は、コンピュータ支援診断における画期的な進歩である。
本研究は,CESMリコンビネート画像に対する深層学習に基づくコンピュータ支援診断開発を提案し,病変の検出と症例の分類を行う。
論文 参考訳(メタデータ) (2022-07-20T06:49:02Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
本稿では,乳房超音波画像における癌検出のための新しい深層学習手法であるBI-RADS-Netを紹介する。
提案手法は, 臨床診断に関連する特徴表現を学習することにより, 乳腺腫瘍の説明と分類を行うタスクを取り入れたものである。
臨床医が医療現場で診断・報告するために使用する形態学的特徴の観点から予測(良性または悪性)の説明が提供される。
論文 参考訳(メタデータ) (2021-10-05T19:14:46Z) - Segmentation and ABCD rule extraction for skin tumors classification [0.0]
悪性皮膚病変を鑑別するために臨床診断に用いたABCDルールに基づく自動診断システムを提案する。
このフレームワークは320枚の画像の皮膚科データベース [16] でテストされている。
論文 参考訳(メタデータ) (2021-06-08T14:07:59Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
腹腔鏡装置の術中追跡は、しばしばコンピュータとロボットによる介入の必要条件である。
本研究の課題は,30の手術症例から取得した10,040枚の注釈画像からなる外科的データセットに基づいていた。
結果は、初期仮説、すなわち、アルゴリズムの性能がドメインギャップの増大とともに低下することを確認する。
論文 参考訳(メタデータ) (2020-03-23T14:35:08Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
大規模Vertebrae Challenge(VerSe)は、2019年と2020年に開催されたMICCAI(International Conference on Medical Image Computing and Computer Assisted Intervention)と共同で設立された。
本評価の結果を報告するとともに,脊椎レベル,スキャンレベル,および異なる視野での性能変化について検討した。
論文 参考訳(メタデータ) (2020-01-24T21:09:18Z) - Weakly-Supervised Lesion Segmentation on CT Scans using Co-Segmentation [18.58056402884405]
CTスキャンにおける病変分割は,病変・腫瘍の進展を正確に観察するための重要なステップである。
現在の慣行は、固形腫瘍の反応評価基準と呼ばれる不正確な代用に依存している。
本稿では,畳み込みニューラルネットワークを用いた弱教師付き病変分割法を提案する。
論文 参考訳(メタデータ) (2020-01-23T15:15:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。