From Attack to Defense: Insights into Deep Learning Security Measures in Black-Box Settings
- URL: http://arxiv.org/abs/2405.01963v1
- Date: Fri, 3 May 2024 09:40:47 GMT
- Title: From Attack to Defense: Insights into Deep Learning Security Measures in Black-Box Settings
- Authors: Firuz Juraev, Mohammed Abuhamad, Eric Chan-Tin, George K. Thiruvathukal, Tamer Abuhmed,
- Abstract summary: adversarial samples pose a serious threat that can cause the model to misbehave and compromise the performance of such applications.
Addressing the robustness of Deep Learning models has become crucial to understanding and defending against adversarial attacks.
Our research focuses on black-box attacks such as SimBA, HopSkipJump, MGAAttack, and boundary attacks, as well as preprocessor-based defensive mechanisms.
- Score: 1.8006345220416338
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Learning (DL) is rapidly maturing to the point that it can be used in safety- and security-crucial applications. However, adversarial samples, which are undetectable to the human eye, pose a serious threat that can cause the model to misbehave and compromise the performance of such applications. Addressing the robustness of DL models has become crucial to understanding and defending against adversarial attacks. In this study, we perform comprehensive experiments to examine the effect of adversarial attacks and defenses on various model architectures across well-known datasets. Our research focuses on black-box attacks such as SimBA, HopSkipJump, MGAAttack, and boundary attacks, as well as preprocessor-based defensive mechanisms, including bits squeezing, median smoothing, and JPEG filter. Experimenting with various models, our results demonstrate that the level of noise needed for the attack increases as the number of layers increases. Moreover, the attack success rate decreases as the number of layers increases. This indicates that model complexity and robustness have a significant relationship. Investigating the diversity and robustness relationship, our experiments with diverse models show that having a large number of parameters does not imply higher robustness. Our experiments extend to show the effects of the training dataset on model robustness. Using various datasets such as ImageNet-1000, CIFAR-100, and CIFAR-10 are used to evaluate the black-box attacks. Considering the multiple dimensions of our analysis, e.g., model complexity and training dataset, we examined the behavior of black-box attacks when models apply defenses. Our results show that applying defense strategies can significantly reduce attack effectiveness. This research provides in-depth analysis and insight into the robustness of DL models against various attacks, and defenses.
Related papers
- Efficient Data-Free Model Stealing with Label Diversity [22.8804507954023]
Machine learning as a Service (ML) allows users to query the machine learning model in an API manner, which provides an opportunity for users to enjoy the benefits brought by the high-performance model trained on valuable data.
This interface boosts the proliferation of machine learning based applications, while on the other hand, it introduces the attack surface for model stealing attacks.
Existing model stealing attacks have relaxed their attack assumptions to the data-free setting, while keeping the effectiveness.
In this paper, we revisit the model stealing problem from a diversity perspective and demonstrate that keeping the generated data samples more diverse across all the classes is the critical point
arXiv Detail & Related papers (2024-03-29T18:52:33Z) - Susceptibility of Adversarial Attack on Medical Image Segmentation
Models [0.0]
We investigate the effect of adversarial attacks on segmentation models trained on MRI datasets.
We find that medical imaging segmentation models are indeed vulnerable to adversarial attacks.
We show that using a different loss function than the one used for training yields higher adversarial attack success.
arXiv Detail & Related papers (2024-01-20T12:52:20Z) - SecurityNet: Assessing Machine Learning Vulnerabilities on Public Models [74.58014281829946]
We analyze the effectiveness of several representative attacks/defenses, including model stealing attacks, membership inference attacks, and backdoor detection on public models.
Our evaluation empirically shows the performance of these attacks/defenses can vary significantly on public models compared to self-trained models.
arXiv Detail & Related papers (2023-10-19T11:49:22Z) - Understanding the Robustness of Randomized Feature Defense Against
Query-Based Adversarial Attacks [23.010308600769545]
Deep neural networks are vulnerable to adversarial examples that find samples close to the original image but can make the model misclassify.
We propose a simple and lightweight defense against black-box attacks by adding random noise to hidden features at intermediate layers of the model at inference time.
Our method effectively enhances the model's resilience against both score-based and decision-based black-box attacks.
arXiv Detail & Related papers (2023-10-01T03:53:23Z) - MultiRobustBench: Benchmarking Robustness Against Multiple Attacks [86.70417016955459]
We present the first unified framework for considering multiple attacks against machine learning (ML) models.
Our framework is able to model different levels of learner's knowledge about the test-time adversary.
We evaluate the performance of 16 defended models for robustness against a set of 9 different attack types.
arXiv Detail & Related papers (2023-02-21T20:26:39Z) - Membership-Doctor: Comprehensive Assessment of Membership Inference
Against Machine Learning Models [11.842337448801066]
We present a large-scale measurement of different membership inference attacks and defenses.
We find that some assumptions of the threat model, such as same-architecture and same-distribution between shadow and target models, are unnecessary.
We are also the first to execute attacks on the real-world data collected from the Internet, instead of laboratory datasets.
arXiv Detail & Related papers (2022-08-22T17:00:53Z) - Recent improvements of ASR models in the face of adversarial attacks [28.934863462633636]
Speech Recognition models are vulnerable to adversarial attacks.
We show that the relative strengths of different attack algorithms vary considerably when changing the model architecture.
We release our source code as a package that should help future research in evaluating their attacks and defenses.
arXiv Detail & Related papers (2022-03-29T22:40:37Z) - Theoretical Study of Random Noise Defense against Query-Based Black-Box
Attacks [72.8152874114382]
In this work, we study a simple but promising defense technique, dubbed Random Noise Defense (RND) against query-based black-box attacks.
It is lightweight and can be directly combined with any off-the-shelf models and other defense strategies.
In this work, we present solid theoretical analyses to demonstrate that the defense effect of RND against the query-based black-box attack and the corresponding adaptive attack heavily depends on the magnitude ratio.
arXiv Detail & Related papers (2021-04-23T08:39:41Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
Inference attacks against Machine Learning (ML) models allow adversaries to learn about training data, model parameters, etc.
We concentrate on four attacks - namely, membership inference, model inversion, attribute inference, and model stealing.
Our analysis relies on a modular re-usable software, ML-Doctor, which enables ML model owners to assess the risks of deploying their models.
arXiv Detail & Related papers (2021-02-04T11:35:13Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
Adversarial attacking aims to fool deep neural networks with adversarial examples.
We propose a reinforcement learning based attack model, which can learn from attack history and launch attacks more efficiently.
arXiv Detail & Related papers (2020-09-19T09:12:24Z) - Orthogonal Deep Models As Defense Against Black-Box Attacks [71.23669614195195]
We study the inherent weakness of deep models in black-box settings where the attacker may develop the attack using a model similar to the targeted model.
We introduce a novel gradient regularization scheme that encourages the internal representation of a deep model to be orthogonal to another.
We verify the effectiveness of our technique on a variety of large-scale models.
arXiv Detail & Related papers (2020-06-26T08:29:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.